ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isocnv2 GIF version

Theorem isocnv2 5891
Description: Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
isocnv2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵))

Proof of Theorem isocnv2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 5886 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
2 f1ofn 5532 . . 3 (𝐻:𝐴1-1-onto𝐵𝐻 Fn 𝐴)
31, 2syl 14 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Fn 𝐴)
4 isof1o 5886 . . 3 (𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
54, 2syl 14 . 2 (𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵) → 𝐻 Fn 𝐴)
6 ralcom 2670 . . . . 5 (∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥)))
7 vex 2776 . . . . . . . . . 10 𝑥 ∈ V
8 vex 2776 . . . . . . . . . 10 𝑦 ∈ V
97, 8brcnv 4866 . . . . . . . . 9 (𝑥𝑅𝑦𝑦𝑅𝑥)
109a1i 9 . . . . . . . 8 (((𝐻 Fn 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑅𝑦𝑦𝑅𝑥))
11 funfvex 5603 . . . . . . . . . . 11 ((Fun 𝐻𝑥 ∈ dom 𝐻) → (𝐻𝑥) ∈ V)
1211funfni 5382 . . . . . . . . . 10 ((𝐻 Fn 𝐴𝑥𝐴) → (𝐻𝑥) ∈ V)
1312adantr 276 . . . . . . . . 9 (((𝐻 Fn 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝐻𝑥) ∈ V)
14 funfvex 5603 . . . . . . . . . . 11 ((Fun 𝐻𝑦 ∈ dom 𝐻) → (𝐻𝑦) ∈ V)
1514funfni 5382 . . . . . . . . . 10 ((𝐻 Fn 𝐴𝑦𝐴) → (𝐻𝑦) ∈ V)
1615adantlr 477 . . . . . . . . 9 (((𝐻 Fn 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝐻𝑦) ∈ V)
17 brcnvg 4864 . . . . . . . . 9 (((𝐻𝑥) ∈ V ∧ (𝐻𝑦) ∈ V) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑦)𝑆(𝐻𝑥)))
1813, 16, 17syl2anc 411 . . . . . . . 8 (((𝐻 Fn 𝐴𝑥𝐴) ∧ 𝑦𝐴) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑦)𝑆(𝐻𝑥)))
1910, 18bibi12d 235 . . . . . . 7 (((𝐻 Fn 𝐴𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))))
2019ralbidva 2503 . . . . . 6 ((𝐻 Fn 𝐴𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑦𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))))
2120ralbidva 2503 . . . . 5 (𝐻 Fn 𝐴 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))))
226, 21bitr4id 199 . . . 4 (𝐻 Fn 𝐴 → (∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
2322anbi2d 464 . . 3 (𝐻 Fn 𝐴 → ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))))
24 df-isom 5286 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))))
25 df-isom 5286 . . 3 (𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
2623, 24, 253bitr4g 223 . 2 (𝐻 Fn 𝐴 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵)))
273, 5, 26pm5.21nii 706 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2177  wral 2485  Vcvv 2773   class class class wbr 4048  ccnv 4679   Fn wfn 5272  1-1-ontowf1o 5276  cfv 5277   Isom wiso 5278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3001  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-br 4049  df-opab 4111  df-id 4345  df-cnv 4688  df-co 4689  df-dm 4690  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-f1o 5284  df-fv 5285  df-isom 5286
This theorem is referenced by:  infisoti  7146
  Copyright terms: Public domain W3C validator