Step | Hyp | Ref
| Expression |
1 | | isof1o 5786 |
. . 3
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
2 | | f1ofn 5443 |
. . 3
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻 Fn 𝐴) |
3 | 1, 2 | syl 14 |
. 2
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Fn 𝐴) |
4 | | isof1o 5786 |
. . 3
⊢ (𝐻 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
5 | 4, 2 | syl 14 |
. 2
⊢ (𝐻 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵) → 𝐻 Fn 𝐴) |
6 | | ralcom 2633 |
. . . . 5
⊢
(∀𝑦 ∈
𝐴 ∀𝑥 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥))) |
7 | | vex 2733 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
8 | | vex 2733 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
9 | 7, 8 | brcnv 4794 |
. . . . . . . . 9
⊢ (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥) |
10 | 9 | a1i 9 |
. . . . . . . 8
⊢ (((𝐻 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥)) |
11 | | funfvex 5513 |
. . . . . . . . . . 11
⊢ ((Fun
𝐻 ∧ 𝑥 ∈ dom 𝐻) → (𝐻‘𝑥) ∈ V) |
12 | 11 | funfni 5298 |
. . . . . . . . . 10
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) ∈ V) |
13 | 12 | adantr 274 |
. . . . . . . . 9
⊢ (((𝐻 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝐻‘𝑥) ∈ V) |
14 | | funfvex 5513 |
. . . . . . . . . . 11
⊢ ((Fun
𝐻 ∧ 𝑦 ∈ dom 𝐻) → (𝐻‘𝑦) ∈ V) |
15 | 14 | funfni 5298 |
. . . . . . . . . 10
⊢ ((𝐻 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐻‘𝑦) ∈ V) |
16 | 15 | adantlr 474 |
. . . . . . . . 9
⊢ (((𝐻 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝐻‘𝑦) ∈ V) |
17 | | brcnvg 4792 |
. . . . . . . . 9
⊢ (((𝐻‘𝑥) ∈ V ∧ (𝐻‘𝑦) ∈ V) → ((𝐻‘𝑥)◡𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥))) |
18 | 13, 16, 17 | syl2anc 409 |
. . . . . . . 8
⊢ (((𝐻 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝐻‘𝑥)◡𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥))) |
19 | 10, 18 | bibi12d 234 |
. . . . . . 7
⊢ (((𝐻 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝑥◡𝑅𝑦 ↔ (𝐻‘𝑥)◡𝑆(𝐻‘𝑦)) ↔ (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥)))) |
20 | 19 | ralbidva 2466 |
. . . . . 6
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 (𝑥◡𝑅𝑦 ↔ (𝐻‘𝑥)◡𝑆(𝐻‘𝑦)) ↔ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥)))) |
21 | 20 | ralbidva 2466 |
. . . . 5
⊢ (𝐻 Fn 𝐴 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥◡𝑅𝑦 ↔ (𝐻‘𝑥)◡𝑆(𝐻‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥)))) |
22 | 6, 21 | bitr4id 198 |
. . . 4
⊢ (𝐻 Fn 𝐴 → (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥◡𝑅𝑦 ↔ (𝐻‘𝑥)◡𝑆(𝐻‘𝑦)))) |
23 | 22 | anbi2d 461 |
. . 3
⊢ (𝐻 Fn 𝐴 → ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥))) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥◡𝑅𝑦 ↔ (𝐻‘𝑥)◡𝑆(𝐻‘𝑦))))) |
24 | | df-isom 5207 |
. . 3
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝑦𝑅𝑥 ↔ (𝐻‘𝑦)𝑆(𝐻‘𝑥)))) |
25 | | df-isom 5207 |
. . 3
⊢ (𝐻 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥◡𝑅𝑦 ↔ (𝐻‘𝑥)◡𝑆(𝐻‘𝑦)))) |
26 | 23, 24, 25 | 3bitr4g 222 |
. 2
⊢ (𝐻 Fn 𝐴 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵))) |
27 | 3, 5, 26 | pm5.21nii 699 |
1
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵)) |