ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isocnv2 GIF version

Theorem isocnv2 5807
Description: Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
isocnv2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵))

Proof of Theorem isocnv2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 5802 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
2 f1ofn 5458 . . 3 (𝐻:𝐴1-1-onto𝐵𝐻 Fn 𝐴)
31, 2syl 14 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Fn 𝐴)
4 isof1o 5802 . . 3 (𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
54, 2syl 14 . 2 (𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵) → 𝐻 Fn 𝐴)
6 ralcom 2640 . . . . 5 (∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥)))
7 vex 2740 . . . . . . . . . 10 𝑥 ∈ V
8 vex 2740 . . . . . . . . . 10 𝑦 ∈ V
97, 8brcnv 4806 . . . . . . . . 9 (𝑥𝑅𝑦𝑦𝑅𝑥)
109a1i 9 . . . . . . . 8 (((𝐻 Fn 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑅𝑦𝑦𝑅𝑥))
11 funfvex 5528 . . . . . . . . . . 11 ((Fun 𝐻𝑥 ∈ dom 𝐻) → (𝐻𝑥) ∈ V)
1211funfni 5312 . . . . . . . . . 10 ((𝐻 Fn 𝐴𝑥𝐴) → (𝐻𝑥) ∈ V)
1312adantr 276 . . . . . . . . 9 (((𝐻 Fn 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝐻𝑥) ∈ V)
14 funfvex 5528 . . . . . . . . . . 11 ((Fun 𝐻𝑦 ∈ dom 𝐻) → (𝐻𝑦) ∈ V)
1514funfni 5312 . . . . . . . . . 10 ((𝐻 Fn 𝐴𝑦𝐴) → (𝐻𝑦) ∈ V)
1615adantlr 477 . . . . . . . . 9 (((𝐻 Fn 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝐻𝑦) ∈ V)
17 brcnvg 4804 . . . . . . . . 9 (((𝐻𝑥) ∈ V ∧ (𝐻𝑦) ∈ V) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑦)𝑆(𝐻𝑥)))
1813, 16, 17syl2anc 411 . . . . . . . 8 (((𝐻 Fn 𝐴𝑥𝐴) ∧ 𝑦𝐴) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑦)𝑆(𝐻𝑥)))
1910, 18bibi12d 235 . . . . . . 7 (((𝐻 Fn 𝐴𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))))
2019ralbidva 2473 . . . . . 6 ((𝐻 Fn 𝐴𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑦𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))))
2120ralbidva 2473 . . . . 5 (𝐻 Fn 𝐴 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))))
226, 21bitr4id 199 . . . 4 (𝐻 Fn 𝐴 → (∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
2322anbi2d 464 . . 3 (𝐻 Fn 𝐴 → ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))))
24 df-isom 5221 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))))
25 df-isom 5221 . . 3 (𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
2623, 24, 253bitr4g 223 . 2 (𝐻 Fn 𝐴 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵)))
273, 5, 26pm5.21nii 704 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2148  wral 2455  Vcvv 2737   class class class wbr 4000  ccnv 4622   Fn wfn 5207  1-1-ontowf1o 5211  cfv 5212   Isom wiso 5213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-id 4290  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-f1o 5219  df-fv 5220  df-isom 5221
This theorem is referenced by:  infisoti  7025
  Copyright terms: Public domain W3C validator