ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isocnv2 GIF version

Theorem isocnv2 5780
Description: Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
isocnv2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵))

Proof of Theorem isocnv2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 5775 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
2 f1ofn 5433 . . 3 (𝐻:𝐴1-1-onto𝐵𝐻 Fn 𝐴)
31, 2syl 14 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Fn 𝐴)
4 isof1o 5775 . . 3 (𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
54, 2syl 14 . 2 (𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵) → 𝐻 Fn 𝐴)
6 ralcom 2629 . . . . 5 (∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥)))
7 vex 2729 . . . . . . . . . 10 𝑥 ∈ V
8 vex 2729 . . . . . . . . . 10 𝑦 ∈ V
97, 8brcnv 4787 . . . . . . . . 9 (𝑥𝑅𝑦𝑦𝑅𝑥)
109a1i 9 . . . . . . . 8 (((𝐻 Fn 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑅𝑦𝑦𝑅𝑥))
11 funfvex 5503 . . . . . . . . . . 11 ((Fun 𝐻𝑥 ∈ dom 𝐻) → (𝐻𝑥) ∈ V)
1211funfni 5288 . . . . . . . . . 10 ((𝐻 Fn 𝐴𝑥𝐴) → (𝐻𝑥) ∈ V)
1312adantr 274 . . . . . . . . 9 (((𝐻 Fn 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝐻𝑥) ∈ V)
14 funfvex 5503 . . . . . . . . . . 11 ((Fun 𝐻𝑦 ∈ dom 𝐻) → (𝐻𝑦) ∈ V)
1514funfni 5288 . . . . . . . . . 10 ((𝐻 Fn 𝐴𝑦𝐴) → (𝐻𝑦) ∈ V)
1615adantlr 469 . . . . . . . . 9 (((𝐻 Fn 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝐻𝑦) ∈ V)
17 brcnvg 4785 . . . . . . . . 9 (((𝐻𝑥) ∈ V ∧ (𝐻𝑦) ∈ V) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑦)𝑆(𝐻𝑥)))
1813, 16, 17syl2anc 409 . . . . . . . 8 (((𝐻 Fn 𝐴𝑥𝐴) ∧ 𝑦𝐴) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑦)𝑆(𝐻𝑥)))
1910, 18bibi12d 234 . . . . . . 7 (((𝐻 Fn 𝐴𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))))
2019ralbidva 2462 . . . . . 6 ((𝐻 Fn 𝐴𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑦𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))))
2120ralbidva 2462 . . . . 5 (𝐻 Fn 𝐴 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))))
226, 21bitr4id 198 . . . 4 (𝐻 Fn 𝐴 → (∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
2322anbi2d 460 . . 3 (𝐻 Fn 𝐴 → ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))))
24 df-isom 5197 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))))
25 df-isom 5197 . . 3 (𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
2623, 24, 253bitr4g 222 . 2 (𝐻 Fn 𝐴 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵)))
273, 5, 26pm5.21nii 694 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wcel 2136  wral 2444  Vcvv 2726   class class class wbr 3982  ccnv 4603   Fn wfn 5183  1-1-ontowf1o 5187  cfv 5188   Isom wiso 5189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-f1o 5195  df-fv 5196  df-isom 5197
This theorem is referenced by:  infisoti  6997
  Copyright terms: Public domain W3C validator