Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  isocnv2 GIF version

Theorem isocnv2 5722
 Description: Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
isocnv2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵))

Proof of Theorem isocnv2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 5717 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
2 f1ofn 5377 . . 3 (𝐻:𝐴1-1-onto𝐵𝐻 Fn 𝐴)
31, 2syl 14 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Fn 𝐴)
4 isof1o 5717 . . 3 (𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
54, 2syl 14 . 2 (𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵) → 𝐻 Fn 𝐴)
6 ralcom 2598 . . . . 5 (∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥)))
7 vex 2693 . . . . . . . . . 10 𝑥 ∈ V
8 vex 2693 . . . . . . . . . 10 𝑦 ∈ V
97, 8brcnv 4731 . . . . . . . . 9 (𝑥𝑅𝑦𝑦𝑅𝑥)
109a1i 9 . . . . . . . 8 (((𝐻 Fn 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑅𝑦𝑦𝑅𝑥))
11 funfvex 5447 . . . . . . . . . . 11 ((Fun 𝐻𝑥 ∈ dom 𝐻) → (𝐻𝑥) ∈ V)
1211funfni 5232 . . . . . . . . . 10 ((𝐻 Fn 𝐴𝑥𝐴) → (𝐻𝑥) ∈ V)
1312adantr 274 . . . . . . . . 9 (((𝐻 Fn 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝐻𝑥) ∈ V)
14 funfvex 5447 . . . . . . . . . . 11 ((Fun 𝐻𝑦 ∈ dom 𝐻) → (𝐻𝑦) ∈ V)
1514funfni 5232 . . . . . . . . . 10 ((𝐻 Fn 𝐴𝑦𝐴) → (𝐻𝑦) ∈ V)
1615adantlr 469 . . . . . . . . 9 (((𝐻 Fn 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝐻𝑦) ∈ V)
17 brcnvg 4729 . . . . . . . . 9 (((𝐻𝑥) ∈ V ∧ (𝐻𝑦) ∈ V) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑦)𝑆(𝐻𝑥)))
1813, 16, 17syl2anc 409 . . . . . . . 8 (((𝐻 Fn 𝐴𝑥𝐴) ∧ 𝑦𝐴) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑦)𝑆(𝐻𝑥)))
1910, 18bibi12d 234 . . . . . . 7 (((𝐻 Fn 𝐴𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))))
2019ralbidva 2435 . . . . . 6 ((𝐻 Fn 𝐴𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑦𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))))
2120ralbidva 2435 . . . . 5 (𝐻 Fn 𝐴 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))))
226, 21bitr4id 198 . . . 4 (𝐻 Fn 𝐴 → (∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
2322anbi2d 460 . . 3 (𝐻 Fn 𝐴 → ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))))
24 df-isom 5141 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))))
25 df-isom 5141 . . 3 (𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
2623, 24, 253bitr4g 222 . 2 (𝐻 Fn 𝐴 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵)))
273, 5, 26pm5.21nii 694 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵))
 Colors of variables: wff set class Syntax hints:   ∧ wa 103   ↔ wb 104   ∈ wcel 1481  ∀wral 2417  Vcvv 2690   class class class wbr 3938  ◡ccnv 4547   Fn wfn 5127  –1-1-onto→wf1o 5131  ‘cfv 5132   Isom wiso 5133 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4055  ax-pow 4107  ax-pr 4140 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2692  df-sbc 2915  df-un 3081  df-in 3083  df-ss 3090  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-br 3939  df-opab 3999  df-id 4224  df-cnv 4556  df-co 4557  df-dm 4558  df-iota 5097  df-fun 5134  df-fn 5135  df-f 5136  df-f1 5137  df-f1o 5139  df-fv 5140  df-isom 5141 This theorem is referenced by:  infisoti  6929
 Copyright terms: Public domain W3C validator