Step | Hyp | Ref
| Expression |
1 | | xrnegiso.1 |
. . . . . 6
⊢ 𝐹 = (𝑥 ∈ ℝ* ↦
-𝑒𝑥) |
2 | | simpr 109 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ ℝ*) → 𝑥 ∈ ℝ*) |
3 | 2 | xnegcld 9812 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ ℝ*) → -𝑒𝑥 ∈ ℝ*) |
4 | | simpr 109 |
. . . . . . 7
⊢
((⊤ ∧ 𝑦
∈ ℝ*) → 𝑦 ∈ ℝ*) |
5 | 4 | xnegcld 9812 |
. . . . . 6
⊢
((⊤ ∧ 𝑦
∈ ℝ*) → -𝑒𝑦 ∈ ℝ*) |
6 | | xnegneg 9790 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ*
→ -𝑒-𝑒𝑥 = 𝑥) |
7 | 6 | eqeq2d 2182 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ*
→ (-𝑒𝑦 =
-𝑒-𝑒𝑥 ↔ -𝑒𝑦 = 𝑥)) |
8 | 7 | adantr 274 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (-𝑒𝑦 =
-𝑒-𝑒𝑥 ↔ -𝑒𝑦 = 𝑥)) |
9 | | eqcom 2172 |
. . . . . . . . 9
⊢
(-𝑒𝑦 = 𝑥 ↔ 𝑥 = -𝑒𝑦) |
10 | 8, 9 | bitrdi 195 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (-𝑒𝑦 =
-𝑒-𝑒𝑥 ↔ 𝑥 = -𝑒𝑦)) |
11 | | simpr 109 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → 𝑦 ∈ ℝ*) |
12 | | xnegcl 9789 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ*
→ -𝑒𝑥 ∈ ℝ*) |
13 | 12 | adantr 274 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → -𝑒𝑥 ∈ ℝ*) |
14 | | xneg11 9791 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℝ*
∧ -𝑒𝑥 ∈ ℝ*) →
(-𝑒𝑦 =
-𝑒-𝑒𝑥 ↔ 𝑦 = -𝑒𝑥)) |
15 | 11, 13, 14 | syl2anc 409 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (-𝑒𝑦 =
-𝑒-𝑒𝑥 ↔ 𝑦 = -𝑒𝑥)) |
16 | 10, 15 | bitr3d 189 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (𝑥 = -𝑒𝑦 ↔ 𝑦 = -𝑒𝑥)) |
17 | 16 | adantl 275 |
. . . . . 6
⊢
((⊤ ∧ (𝑥
∈ ℝ* ∧ 𝑦 ∈ ℝ*)) → (𝑥 = -𝑒𝑦 ↔ 𝑦 = -𝑒𝑥)) |
18 | 1, 3, 5, 17 | f1ocnv2d 6053 |
. . . . 5
⊢ (⊤
→ (𝐹:ℝ*–1-1-onto→ℝ* ∧ ◡𝐹 = (𝑦 ∈ ℝ* ↦
-𝑒𝑦))) |
19 | 18 | mptru 1357 |
. . . 4
⊢ (𝐹:ℝ*–1-1-onto→ℝ* ∧ ◡𝐹 = (𝑦 ∈ ℝ* ↦
-𝑒𝑦)) |
20 | 19 | simpli 110 |
. . 3
⊢ 𝐹:ℝ*–1-1-onto→ℝ* |
21 | | simpl 108 |
. . . . . . 7
⊢ ((𝑧 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → 𝑧 ∈ ℝ*) |
22 | 21 | xnegcld 9812 |
. . . . . 6
⊢ ((𝑧 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → -𝑒𝑧 ∈ ℝ*) |
23 | | simpr 109 |
. . . . . . 7
⊢ ((𝑧 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → 𝑦 ∈ ℝ*) |
24 | 23 | xnegcld 9812 |
. . . . . 6
⊢ ((𝑧 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → -𝑒𝑦 ∈ ℝ*) |
25 | | brcnvg 4792 |
. . . . . 6
⊢
((-𝑒𝑧 ∈ ℝ* ∧
-𝑒𝑦
∈ ℝ*) → (-𝑒𝑧◡
< -𝑒𝑦
↔ -𝑒𝑦 < -𝑒𝑧)) |
26 | 22, 24, 25 | syl2anc 409 |
. . . . 5
⊢ ((𝑧 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (-𝑒𝑧◡
< -𝑒𝑦
↔ -𝑒𝑦 < -𝑒𝑧)) |
27 | | xnegeq 9784 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → -𝑒𝑥 = -𝑒𝑧) |
28 | 1, 27, 21, 22 | fvmptd3 5589 |
. . . . . 6
⊢ ((𝑧 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (𝐹‘𝑧) = -𝑒𝑧) |
29 | | xnegeq 9784 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → -𝑒𝑥 = -𝑒𝑦) |
30 | 1, 29, 23, 24 | fvmptd3 5589 |
. . . . . 6
⊢ ((𝑧 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (𝐹‘𝑦) = -𝑒𝑦) |
31 | 28, 30 | breq12d 4002 |
. . . . 5
⊢ ((𝑧 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → ((𝐹‘𝑧)◡
< (𝐹‘𝑦) ↔
-𝑒𝑧◡ < -𝑒𝑦)) |
32 | | xltneg 9793 |
. . . . 5
⊢ ((𝑧 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (𝑧 < 𝑦 ↔ -𝑒𝑦 < -𝑒𝑧)) |
33 | 26, 31, 32 | 3bitr4rd 220 |
. . . 4
⊢ ((𝑧 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (𝑧 < 𝑦 ↔ (𝐹‘𝑧)◡
< (𝐹‘𝑦))) |
34 | 33 | rgen2a 2524 |
. . 3
⊢
∀𝑧 ∈
ℝ* ∀𝑦 ∈ ℝ* (𝑧 < 𝑦 ↔ (𝐹‘𝑧)◡
< (𝐹‘𝑦)) |
35 | | df-isom 5207 |
. . 3
⊢ (𝐹 Isom < , ◡ < (ℝ*,
ℝ*) ↔ (𝐹:ℝ*–1-1-onto→ℝ* ∧ ∀𝑧 ∈ ℝ*
∀𝑦 ∈
ℝ* (𝑧 <
𝑦 ↔ (𝐹‘𝑧)◡
< (𝐹‘𝑦)))) |
36 | 20, 34, 35 | mpbir2an 937 |
. 2
⊢ 𝐹 Isom < , ◡ < (ℝ*,
ℝ*) |
37 | | xnegeq 9784 |
. . . 4
⊢ (𝑦 = 𝑥 → -𝑒𝑦 = -𝑒𝑥) |
38 | 37 | cbvmptv 4085 |
. . 3
⊢ (𝑦 ∈ ℝ*
↦ -𝑒𝑦) = (𝑥 ∈ ℝ* ↦
-𝑒𝑥) |
39 | 19 | simpri 112 |
. . 3
⊢ ◡𝐹 = (𝑦 ∈ ℝ* ↦
-𝑒𝑦) |
40 | 38, 39, 1 | 3eqtr4i 2201 |
. 2
⊢ ◡𝐹 = 𝐹 |
41 | 36, 40 | pm3.2i 270 |
1
⊢ (𝐹 Isom < , ◡ < (ℝ*,
ℝ*) ∧ ◡𝐹 = 𝐹) |