ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrnegiso GIF version

Theorem xrnegiso 11773
Description: Negation is an order anti-isomorphism of the extended reals, which is its own inverse. (Contributed by Jim Kingdon, 2-May-2023.)
Hypothesis
Ref Expression
xrnegiso.1 𝐹 = (𝑥 ∈ ℝ* ↦ -𝑒𝑥)
Assertion
Ref Expression
xrnegiso (𝐹 Isom < , < (ℝ*, ℝ*) ∧ 𝐹 = 𝐹)

Proof of Theorem xrnegiso
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrnegiso.1 . . . . . 6 𝐹 = (𝑥 ∈ ℝ* ↦ -𝑒𝑥)
2 simpr 110 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ*) → 𝑥 ∈ ℝ*)
32xnegcld 10051 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ*) → -𝑒𝑥 ∈ ℝ*)
4 simpr 110 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
54xnegcld 10051 . . . . . 6 ((⊤ ∧ 𝑦 ∈ ℝ*) → -𝑒𝑦 ∈ ℝ*)
6 xnegneg 10029 . . . . . . . . . . 11 (𝑥 ∈ ℝ* → -𝑒-𝑒𝑥 = 𝑥)
76eqeq2d 2241 . . . . . . . . . 10 (𝑥 ∈ ℝ* → (-𝑒𝑦 = -𝑒-𝑒𝑥 ↔ -𝑒𝑦 = 𝑥))
87adantr 276 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒𝑦 = -𝑒-𝑒𝑥 ↔ -𝑒𝑦 = 𝑥))
9 eqcom 2231 . . . . . . . . 9 (-𝑒𝑦 = 𝑥𝑥 = -𝑒𝑦)
108, 9bitrdi 196 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒𝑦 = -𝑒-𝑒𝑥𝑥 = -𝑒𝑦))
11 simpr 110 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
12 xnegcl 10028 . . . . . . . . . 10 (𝑥 ∈ ℝ* → -𝑒𝑥 ∈ ℝ*)
1312adantr 276 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒𝑥 ∈ ℝ*)
14 xneg11 10030 . . . . . . . . 9 ((𝑦 ∈ ℝ* ∧ -𝑒𝑥 ∈ ℝ*) → (-𝑒𝑦 = -𝑒-𝑒𝑥𝑦 = -𝑒𝑥))
1511, 13, 14syl2anc 411 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒𝑦 = -𝑒-𝑒𝑥𝑦 = -𝑒𝑥))
1610, 15bitr3d 190 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 = -𝑒𝑦𝑦 = -𝑒𝑥))
1716adantl 277 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝑥 = -𝑒𝑦𝑦 = -𝑒𝑥))
181, 3, 5, 17f1ocnv2d 6210 . . . . 5 (⊤ → (𝐹:ℝ*1-1-onto→ℝ*𝐹 = (𝑦 ∈ ℝ* ↦ -𝑒𝑦)))
1918mptru 1404 . . . 4 (𝐹:ℝ*1-1-onto→ℝ*𝐹 = (𝑦 ∈ ℝ* ↦ -𝑒𝑦))
2019simpli 111 . . 3 𝐹:ℝ*1-1-onto→ℝ*
21 simpl 109 . . . . . . 7 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑧 ∈ ℝ*)
2221xnegcld 10051 . . . . . 6 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒𝑧 ∈ ℝ*)
23 simpr 110 . . . . . . 7 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
2423xnegcld 10051 . . . . . 6 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒𝑦 ∈ ℝ*)
25 brcnvg 4903 . . . . . 6 ((-𝑒𝑧 ∈ ℝ* ∧ -𝑒𝑦 ∈ ℝ*) → (-𝑒𝑧 < -𝑒𝑦 ↔ -𝑒𝑦 < -𝑒𝑧))
2622, 24, 25syl2anc 411 . . . . 5 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒𝑧 < -𝑒𝑦 ↔ -𝑒𝑦 < -𝑒𝑧))
27 xnegeq 10023 . . . . . . 7 (𝑥 = 𝑧 → -𝑒𝑥 = -𝑒𝑧)
281, 27, 21, 22fvmptd3 5728 . . . . . 6 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) → (𝐹𝑧) = -𝑒𝑧)
29 xnegeq 10023 . . . . . . 7 (𝑥 = 𝑦 → -𝑒𝑥 = -𝑒𝑦)
301, 29, 23, 24fvmptd3 5728 . . . . . 6 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) → (𝐹𝑦) = -𝑒𝑦)
3128, 30breq12d 4096 . . . . 5 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝐹𝑧) < (𝐹𝑦) ↔ -𝑒𝑧 < -𝑒𝑦))
32 xltneg 10032 . . . . 5 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑧 < 𝑦 ↔ -𝑒𝑦 < -𝑒𝑧))
3326, 31, 323bitr4rd 221 . . . 4 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑧 < 𝑦 ↔ (𝐹𝑧) < (𝐹𝑦)))
3433rgen2a 2584 . . 3 𝑧 ∈ ℝ*𝑦 ∈ ℝ* (𝑧 < 𝑦 ↔ (𝐹𝑧) < (𝐹𝑦))
35 df-isom 5327 . . 3 (𝐹 Isom < , < (ℝ*, ℝ*) ↔ (𝐹:ℝ*1-1-onto→ℝ* ∧ ∀𝑧 ∈ ℝ*𝑦 ∈ ℝ* (𝑧 < 𝑦 ↔ (𝐹𝑧) < (𝐹𝑦))))
3620, 34, 35mpbir2an 948 . 2 𝐹 Isom < , < (ℝ*, ℝ*)
37 xnegeq 10023 . . . 4 (𝑦 = 𝑥 → -𝑒𝑦 = -𝑒𝑥)
3837cbvmptv 4180 . . 3 (𝑦 ∈ ℝ* ↦ -𝑒𝑦) = (𝑥 ∈ ℝ* ↦ -𝑒𝑥)
3919simpri 113 . . 3 𝐹 = (𝑦 ∈ ℝ* ↦ -𝑒𝑦)
4038, 39, 13eqtr4i 2260 . 2 𝐹 = 𝐹
4136, 40pm3.2i 272 1 (𝐹 Isom < , < (ℝ*, ℝ*) ∧ 𝐹 = 𝐹)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1395  wtru 1396  wcel 2200  wral 2508   class class class wbr 4083  cmpt 4145  ccnv 4718  1-1-ontowf1o 5317  cfv 5318   Isom wiso 5319  *cxr 8180   < clt 8181  -𝑒cxne 9965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-sub 8319  df-neg 8320  df-xneg 9968
This theorem is referenced by:  infxrnegsupex  11774
  Copyright terms: Public domain W3C validator