| Step | Hyp | Ref
 | Expression | 
| 1 |   | xrnegiso.1 | 
. . . . . 6
⊢ 𝐹 = (𝑥 ∈ ℝ* ↦
-𝑒𝑥) | 
| 2 |   | simpr 110 | 
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ ℝ*) → 𝑥 ∈ ℝ*) | 
| 3 | 2 | xnegcld 9930 | 
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ ℝ*) → -𝑒𝑥 ∈ ℝ*) | 
| 4 |   | simpr 110 | 
. . . . . . 7
⊢
((⊤ ∧ 𝑦
∈ ℝ*) → 𝑦 ∈ ℝ*) | 
| 5 | 4 | xnegcld 9930 | 
. . . . . 6
⊢
((⊤ ∧ 𝑦
∈ ℝ*) → -𝑒𝑦 ∈ ℝ*) | 
| 6 |   | xnegneg 9908 | 
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ*
→ -𝑒-𝑒𝑥 = 𝑥) | 
| 7 | 6 | eqeq2d 2208 | 
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ*
→ (-𝑒𝑦 =
-𝑒-𝑒𝑥 ↔ -𝑒𝑦 = 𝑥)) | 
| 8 | 7 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (-𝑒𝑦 =
-𝑒-𝑒𝑥 ↔ -𝑒𝑦 = 𝑥)) | 
| 9 |   | eqcom 2198 | 
. . . . . . . . 9
⊢
(-𝑒𝑦 = 𝑥 ↔ 𝑥 = -𝑒𝑦) | 
| 10 | 8, 9 | bitrdi 196 | 
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (-𝑒𝑦 =
-𝑒-𝑒𝑥 ↔ 𝑥 = -𝑒𝑦)) | 
| 11 |   | simpr 110 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → 𝑦 ∈ ℝ*) | 
| 12 |   | xnegcl 9907 | 
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ*
→ -𝑒𝑥 ∈ ℝ*) | 
| 13 | 12 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → -𝑒𝑥 ∈ ℝ*) | 
| 14 |   | xneg11 9909 | 
. . . . . . . . 9
⊢ ((𝑦 ∈ ℝ*
∧ -𝑒𝑥 ∈ ℝ*) →
(-𝑒𝑦 =
-𝑒-𝑒𝑥 ↔ 𝑦 = -𝑒𝑥)) | 
| 15 | 11, 13, 14 | syl2anc 411 | 
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (-𝑒𝑦 =
-𝑒-𝑒𝑥 ↔ 𝑦 = -𝑒𝑥)) | 
| 16 | 10, 15 | bitr3d 190 | 
. . . . . . 7
⊢ ((𝑥 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (𝑥 = -𝑒𝑦 ↔ 𝑦 = -𝑒𝑥)) | 
| 17 | 16 | adantl 277 | 
. . . . . 6
⊢
((⊤ ∧ (𝑥
∈ ℝ* ∧ 𝑦 ∈ ℝ*)) → (𝑥 = -𝑒𝑦 ↔ 𝑦 = -𝑒𝑥)) | 
| 18 | 1, 3, 5, 17 | f1ocnv2d 6127 | 
. . . . 5
⊢ (⊤
→ (𝐹:ℝ*–1-1-onto→ℝ* ∧ ◡𝐹 = (𝑦 ∈ ℝ* ↦
-𝑒𝑦))) | 
| 19 | 18 | mptru 1373 | 
. . . 4
⊢ (𝐹:ℝ*–1-1-onto→ℝ* ∧ ◡𝐹 = (𝑦 ∈ ℝ* ↦
-𝑒𝑦)) | 
| 20 | 19 | simpli 111 | 
. . 3
⊢ 𝐹:ℝ*–1-1-onto→ℝ* | 
| 21 |   | simpl 109 | 
. . . . . . 7
⊢ ((𝑧 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → 𝑧 ∈ ℝ*) | 
| 22 | 21 | xnegcld 9930 | 
. . . . . 6
⊢ ((𝑧 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → -𝑒𝑧 ∈ ℝ*) | 
| 23 |   | simpr 110 | 
. . . . . . 7
⊢ ((𝑧 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → 𝑦 ∈ ℝ*) | 
| 24 | 23 | xnegcld 9930 | 
. . . . . 6
⊢ ((𝑧 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → -𝑒𝑦 ∈ ℝ*) | 
| 25 |   | brcnvg 4847 | 
. . . . . 6
⊢
((-𝑒𝑧 ∈ ℝ* ∧
-𝑒𝑦
∈ ℝ*) → (-𝑒𝑧◡
< -𝑒𝑦
↔ -𝑒𝑦 < -𝑒𝑧)) | 
| 26 | 22, 24, 25 | syl2anc 411 | 
. . . . 5
⊢ ((𝑧 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (-𝑒𝑧◡
< -𝑒𝑦
↔ -𝑒𝑦 < -𝑒𝑧)) | 
| 27 |   | xnegeq 9902 | 
. . . . . . 7
⊢ (𝑥 = 𝑧 → -𝑒𝑥 = -𝑒𝑧) | 
| 28 | 1, 27, 21, 22 | fvmptd3 5655 | 
. . . . . 6
⊢ ((𝑧 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (𝐹‘𝑧) = -𝑒𝑧) | 
| 29 |   | xnegeq 9902 | 
. . . . . . 7
⊢ (𝑥 = 𝑦 → -𝑒𝑥 = -𝑒𝑦) | 
| 30 | 1, 29, 23, 24 | fvmptd3 5655 | 
. . . . . 6
⊢ ((𝑧 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (𝐹‘𝑦) = -𝑒𝑦) | 
| 31 | 28, 30 | breq12d 4046 | 
. . . . 5
⊢ ((𝑧 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → ((𝐹‘𝑧)◡
< (𝐹‘𝑦) ↔
-𝑒𝑧◡ < -𝑒𝑦)) | 
| 32 |   | xltneg 9911 | 
. . . . 5
⊢ ((𝑧 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (𝑧 < 𝑦 ↔ -𝑒𝑦 < -𝑒𝑧)) | 
| 33 | 26, 31, 32 | 3bitr4rd 221 | 
. . . 4
⊢ ((𝑧 ∈ ℝ*
∧ 𝑦 ∈
ℝ*) → (𝑧 < 𝑦 ↔ (𝐹‘𝑧)◡
< (𝐹‘𝑦))) | 
| 34 | 33 | rgen2a 2551 | 
. . 3
⊢
∀𝑧 ∈
ℝ* ∀𝑦 ∈ ℝ* (𝑧 < 𝑦 ↔ (𝐹‘𝑧)◡
< (𝐹‘𝑦)) | 
| 35 |   | df-isom 5267 | 
. . 3
⊢ (𝐹 Isom < , ◡ < (ℝ*,
ℝ*) ↔ (𝐹:ℝ*–1-1-onto→ℝ* ∧ ∀𝑧 ∈ ℝ*
∀𝑦 ∈
ℝ* (𝑧 <
𝑦 ↔ (𝐹‘𝑧)◡
< (𝐹‘𝑦)))) | 
| 36 | 20, 34, 35 | mpbir2an 944 | 
. 2
⊢ 𝐹 Isom < , ◡ < (ℝ*,
ℝ*) | 
| 37 |   | xnegeq 9902 | 
. . . 4
⊢ (𝑦 = 𝑥 → -𝑒𝑦 = -𝑒𝑥) | 
| 38 | 37 | cbvmptv 4129 | 
. . 3
⊢ (𝑦 ∈ ℝ*
↦ -𝑒𝑦) = (𝑥 ∈ ℝ* ↦
-𝑒𝑥) | 
| 39 | 19 | simpri 113 | 
. . 3
⊢ ◡𝐹 = (𝑦 ∈ ℝ* ↦
-𝑒𝑦) | 
| 40 | 38, 39, 1 | 3eqtr4i 2227 | 
. 2
⊢ ◡𝐹 = 𝐹 | 
| 41 | 36, 40 | pm3.2i 272 | 
1
⊢ (𝐹 Isom < , ◡ < (ℝ*,
ℝ*) ∧ ◡𝐹 = 𝐹) |