ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrnegiso GIF version

Theorem xrnegiso 10923
Description: Negation is an order anti-isomorphism of the extended reals, which is its own inverse. (Contributed by Jim Kingdon, 2-May-2023.)
Hypothesis
Ref Expression
xrnegiso.1 𝐹 = (𝑥 ∈ ℝ* ↦ -𝑒𝑥)
Assertion
Ref Expression
xrnegiso (𝐹 Isom < , < (ℝ*, ℝ*) ∧ 𝐹 = 𝐹)

Proof of Theorem xrnegiso
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrnegiso.1 . . . . . 6 𝐹 = (𝑥 ∈ ℝ* ↦ -𝑒𝑥)
2 simpr 109 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ*) → 𝑥 ∈ ℝ*)
32xnegcld 9531 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ*) → -𝑒𝑥 ∈ ℝ*)
4 simpr 109 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
54xnegcld 9531 . . . . . 6 ((⊤ ∧ 𝑦 ∈ ℝ*) → -𝑒𝑦 ∈ ℝ*)
6 xnegneg 9509 . . . . . . . . . . 11 (𝑥 ∈ ℝ* → -𝑒-𝑒𝑥 = 𝑥)
76eqeq2d 2126 . . . . . . . . . 10 (𝑥 ∈ ℝ* → (-𝑒𝑦 = -𝑒-𝑒𝑥 ↔ -𝑒𝑦 = 𝑥))
87adantr 272 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒𝑦 = -𝑒-𝑒𝑥 ↔ -𝑒𝑦 = 𝑥))
9 eqcom 2117 . . . . . . . . 9 (-𝑒𝑦 = 𝑥𝑥 = -𝑒𝑦)
108, 9syl6bb 195 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒𝑦 = -𝑒-𝑒𝑥𝑥 = -𝑒𝑦))
11 simpr 109 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
12 xnegcl 9508 . . . . . . . . . 10 (𝑥 ∈ ℝ* → -𝑒𝑥 ∈ ℝ*)
1312adantr 272 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒𝑥 ∈ ℝ*)
14 xneg11 9510 . . . . . . . . 9 ((𝑦 ∈ ℝ* ∧ -𝑒𝑥 ∈ ℝ*) → (-𝑒𝑦 = -𝑒-𝑒𝑥𝑦 = -𝑒𝑥))
1511, 13, 14syl2anc 406 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒𝑦 = -𝑒-𝑒𝑥𝑦 = -𝑒𝑥))
1610, 15bitr3d 189 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 = -𝑒𝑦𝑦 = -𝑒𝑥))
1716adantl 273 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝑥 = -𝑒𝑦𝑦 = -𝑒𝑥))
181, 3, 5, 17f1ocnv2d 5928 . . . . 5 (⊤ → (𝐹:ℝ*1-1-onto→ℝ*𝐹 = (𝑦 ∈ ℝ* ↦ -𝑒𝑦)))
1918mptru 1323 . . . 4 (𝐹:ℝ*1-1-onto→ℝ*𝐹 = (𝑦 ∈ ℝ* ↦ -𝑒𝑦))
2019simpli 110 . . 3 𝐹:ℝ*1-1-onto→ℝ*
21 simpl 108 . . . . . . 7 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑧 ∈ ℝ*)
2221xnegcld 9531 . . . . . 6 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒𝑧 ∈ ℝ*)
23 simpr 109 . . . . . . 7 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
2423xnegcld 9531 . . . . . 6 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒𝑦 ∈ ℝ*)
25 brcnvg 4680 . . . . . 6 ((-𝑒𝑧 ∈ ℝ* ∧ -𝑒𝑦 ∈ ℝ*) → (-𝑒𝑧 < -𝑒𝑦 ↔ -𝑒𝑦 < -𝑒𝑧))
2622, 24, 25syl2anc 406 . . . . 5 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒𝑧 < -𝑒𝑦 ↔ -𝑒𝑦 < -𝑒𝑧))
27 xnegeq 9503 . . . . . . 7 (𝑥 = 𝑧 → -𝑒𝑥 = -𝑒𝑧)
281, 27, 21, 22fvmptd3 5468 . . . . . 6 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) → (𝐹𝑧) = -𝑒𝑧)
29 xnegeq 9503 . . . . . . 7 (𝑥 = 𝑦 → -𝑒𝑥 = -𝑒𝑦)
301, 29, 23, 24fvmptd3 5468 . . . . . 6 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) → (𝐹𝑦) = -𝑒𝑦)
3128, 30breq12d 3908 . . . . 5 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝐹𝑧) < (𝐹𝑦) ↔ -𝑒𝑧 < -𝑒𝑦))
32 xltneg 9512 . . . . 5 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑧 < 𝑦 ↔ -𝑒𝑦 < -𝑒𝑧))
3326, 31, 323bitr4rd 220 . . . 4 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑧 < 𝑦 ↔ (𝐹𝑧) < (𝐹𝑦)))
3433rgen2a 2460 . . 3 𝑧 ∈ ℝ*𝑦 ∈ ℝ* (𝑧 < 𝑦 ↔ (𝐹𝑧) < (𝐹𝑦))
35 df-isom 5090 . . 3 (𝐹 Isom < , < (ℝ*, ℝ*) ↔ (𝐹:ℝ*1-1-onto→ℝ* ∧ ∀𝑧 ∈ ℝ*𝑦 ∈ ℝ* (𝑧 < 𝑦 ↔ (𝐹𝑧) < (𝐹𝑦))))
3620, 34, 35mpbir2an 909 . 2 𝐹 Isom < , < (ℝ*, ℝ*)
37 xnegeq 9503 . . . 4 (𝑦 = 𝑥 → -𝑒𝑦 = -𝑒𝑥)
3837cbvmptv 3984 . . 3 (𝑦 ∈ ℝ* ↦ -𝑒𝑦) = (𝑥 ∈ ℝ* ↦ -𝑒𝑥)
3919simpri 112 . . 3 𝐹 = (𝑦 ∈ ℝ* ↦ -𝑒𝑦)
4038, 39, 13eqtr4i 2145 . 2 𝐹 = 𝐹
4136, 40pm3.2i 268 1 (𝐹 Isom < , < (ℝ*, ℝ*) ∧ 𝐹 = 𝐹)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1314  wtru 1315  wcel 1463  wral 2390   class class class wbr 3895  cmpt 3949  ccnv 4498  1-1-ontowf1o 5080  cfv 5081   Isom wiso 5082  *cxr 7723   < clt 7724  -𝑒cxne 9449
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-addcom 7645  ax-addass 7647  ax-distr 7649  ax-i2m1 7650  ax-0id 7653  ax-rnegex 7654  ax-cnre 7656  ax-pre-ltadd 7661
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-isom 5090  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-sub 7858  df-neg 7859  df-xneg 9452
This theorem is referenced by:  infxrnegsupex  10924
  Copyright terms: Public domain W3C validator