ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfz1isolem1 GIF version

Theorem zfz1isolem1 10775
Description: Lemma for zfz1iso 10776. Existence of an order isomorphism given the existence of shorter isomorphisms. (Contributed by Jim Kingdon, 7-Sep-2022.)
Hypotheses
Ref Expression
zfz1isolem1.k (𝜑𝐾 ∈ ω)
zfz1isolem1.h (𝜑 → ∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)))
zfz1isolem1.xz (𝜑𝑋 ⊆ ℤ)
zfz1isolem1.xf (𝜑𝑋 ∈ Fin)
zfz1isolem1.xs (𝜑𝑋 ≈ suc 𝐾)
zfz1isolem1.mx (𝜑𝑀𝑋)
zfz1isolem1.m (𝜑 → ∀𝑧𝑋 𝑧𝑀)
Assertion
Ref Expression
zfz1isolem1 (𝜑 → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋))
Distinct variable groups:   𝑦,𝐾   𝑧,𝑀   𝑓,𝑀,𝑦   𝑧,𝑋   𝑓,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑓)   𝐾(𝑧,𝑓)

Proof of Theorem zfz1isolem1
Dummy variables 𝑎 𝑏 𝑔 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zfz1isolem1.xz . . . . . 6 (𝜑𝑋 ⊆ ℤ)
21ssdifssd 3265 . . . . 5 (𝜑 → (𝑋 ∖ {𝑀}) ⊆ ℤ)
3 zfz1isolem1.xf . . . . . 6 (𝜑𝑋 ∈ Fin)
4 zfz1isolem1.mx . . . . . 6 (𝜑𝑀𝑋)
5 diffisn 6871 . . . . . 6 ((𝑋 ∈ Fin ∧ 𝑀𝑋) → (𝑋 ∖ {𝑀}) ∈ Fin)
63, 4, 5syl2anc 409 . . . . 5 (𝜑 → (𝑋 ∖ {𝑀}) ∈ Fin)
7 zfz1isolem1.k . . . . . 6 (𝜑𝐾 ∈ ω)
8 zfz1isolem1.xs . . . . . 6 (𝜑𝑋 ≈ suc 𝐾)
9 dif1en 6857 . . . . . 6 ((𝐾 ∈ ω ∧ 𝑋 ≈ suc 𝐾𝑀𝑋) → (𝑋 ∖ {𝑀}) ≈ 𝐾)
107, 8, 4, 9syl3anc 1233 . . . . 5 (𝜑 → (𝑋 ∖ {𝑀}) ≈ 𝐾)
112, 6, 10jca31 307 . . . 4 (𝜑 → (((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾))
12 zfz1isolem1.h . . . . 5 (𝜑 → ∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)))
13 sseq1 3170 . . . . . . . . . 10 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑦 ⊆ ℤ ↔ (𝑋 ∖ {𝑀}) ⊆ ℤ))
14 eleq1 2233 . . . . . . . . . 10 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑦 ∈ Fin ↔ (𝑋 ∖ {𝑀}) ∈ Fin))
1513, 14anbi12d 470 . . . . . . . . 9 (𝑦 = (𝑋 ∖ {𝑀}) → ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ↔ ((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin)))
16 breq1 3992 . . . . . . . . 9 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑦𝐾 ↔ (𝑋 ∖ {𝑀}) ≈ 𝐾))
1715, 16anbi12d 470 . . . . . . . 8 (𝑦 = (𝑋 ∖ {𝑀}) → (((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) ↔ (((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾)))
18 fveq2 5496 . . . . . . . . . . . 12 (𝑦 = (𝑋 ∖ {𝑀}) → (♯‘𝑦) = (♯‘(𝑋 ∖ {𝑀})))
1918oveq2d 5869 . . . . . . . . . . 11 (𝑦 = (𝑋 ∖ {𝑀}) → (1...(♯‘𝑦)) = (1...(♯‘(𝑋 ∖ {𝑀}))))
20 isoeq4 5783 . . . . . . . . . . 11 ((1...(♯‘𝑦)) = (1...(♯‘(𝑋 ∖ {𝑀}))) → (𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦) ↔ 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), 𝑦)))
2119, 20syl 14 . . . . . . . . . 10 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦) ↔ 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), 𝑦)))
22 isoeq5 5784 . . . . . . . . . 10 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), 𝑦) ↔ 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))
2321, 22bitrd 187 . . . . . . . . 9 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦) ↔ 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))
2423exbidv 1818 . . . . . . . 8 (𝑦 = (𝑋 ∖ {𝑀}) → (∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦) ↔ ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))
2517, 24imbi12d 233 . . . . . . 7 (𝑦 = (𝑋 ∖ {𝑀}) → ((((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)) ↔ ((((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))))
2625spcgv 2817 . . . . . 6 ((𝑋 ∖ {𝑀}) ∈ Fin → (∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)) → ((((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))))
276, 26syl 14 . . . . 5 (𝜑 → (∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)) → ((((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))))
2812, 27mpd 13 . . . 4 (𝜑 → ((((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))
2911, 28mpd 13 . . 3 (𝜑 → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))
30 isoeq1 5780 . . . 4 (𝑓 = 𝑔 → (𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})) ↔ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))
3130cbvexv 1911 . . 3 (∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})) ↔ ∃𝑔 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))
3229, 31sylib 121 . 2 (𝜑 → ∃𝑔 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))
33 df-isom 5207 . . . . . . . . 9 (𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})) ↔ (𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}) ∧ ∀𝑢 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))∀𝑣 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))(𝑢 < 𝑣 ↔ (𝑔𝑢) < (𝑔𝑣))))
3433biimpi 119 . . . . . . . 8 (𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})) → (𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}) ∧ ∀𝑢 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))∀𝑣 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))(𝑢 < 𝑣 ↔ (𝑔𝑢) < (𝑔𝑣))))
3534adantl 275 . . . . . . 7 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}) ∧ ∀𝑢 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))∀𝑣 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))(𝑢 < 𝑣 ↔ (𝑔𝑢) < (𝑔𝑣))))
3635simpld 111 . . . . . 6 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → 𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}))
37 hashcl 10715 . . . . . . . . 9 (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0)
383, 37syl 14 . . . . . . . 8 (𝜑 → (♯‘𝑋) ∈ ℕ0)
3938adantr 274 . . . . . . 7 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (♯‘𝑋) ∈ ℕ0)
404adantr 274 . . . . . . 7 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → 𝑀𝑋)
41 f1osng 5483 . . . . . . 7 (((♯‘𝑋) ∈ ℕ0𝑀𝑋) → {⟨(♯‘𝑋), 𝑀⟩}:{(♯‘𝑋)}–1-1-onto→{𝑀})
4239, 40, 41syl2anc 409 . . . . . 6 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → {⟨(♯‘𝑋), 𝑀⟩}:{(♯‘𝑋)}–1-1-onto→{𝑀})
43 hashdifsn 10754 . . . . . . . . . . . . 13 ((𝑋 ∈ Fin ∧ 𝑀𝑋) → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1))
443, 4, 43syl2anc 409 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1))
4544oveq1d 5868 . . . . . . . . . . 11 (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (((♯‘𝑋) − 1) + 1))
4638nn0cnd 9190 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑋) ∈ ℂ)
47 1cnd 7936 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
4846, 47npcand 8234 . . . . . . . . . . 11 (𝜑 → (((♯‘𝑋) − 1) + 1) = (♯‘𝑋))
4945, 48eqtrd 2203 . . . . . . . . . 10 (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (♯‘𝑋))
5049sneqd 3596 . . . . . . . . 9 (𝜑 → {((♯‘(𝑋 ∖ {𝑀})) + 1)} = {(♯‘𝑋)})
5150ineq2d 3328 . . . . . . . 8 (𝜑 → ((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {((♯‘(𝑋 ∖ {𝑀})) + 1)}) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {(♯‘𝑋)}))
52 fzp1disj 10036 . . . . . . . 8 ((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {((♯‘(𝑋 ∖ {𝑀})) + 1)}) = ∅
5351, 52eqtr3di 2218 . . . . . . 7 (𝜑 → ((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {(♯‘𝑋)}) = ∅)
5453adantr 274 . . . . . 6 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {(♯‘𝑋)}) = ∅)
55 incom 3319 . . . . . . . 8 ((𝑋 ∖ {𝑀}) ∩ {𝑀}) = ({𝑀} ∩ (𝑋 ∖ {𝑀}))
56 disjdif 3487 . . . . . . . 8 ({𝑀} ∩ (𝑋 ∖ {𝑀})) = ∅
5755, 56eqtri 2191 . . . . . . 7 ((𝑋 ∖ {𝑀}) ∩ {𝑀}) = ∅
5857a1i 9 . . . . . 6 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ((𝑋 ∖ {𝑀}) ∩ {𝑀}) = ∅)
59 f1oun 5462 . . . . . 6 (((𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}) ∧ {⟨(♯‘𝑋), 𝑀⟩}:{(♯‘𝑋)}–1-1-onto→{𝑀}) ∧ (((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {(♯‘𝑋)}) = ∅ ∧ ((𝑋 ∖ {𝑀}) ∩ {𝑀}) = ∅)) → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀}))
6036, 42, 54, 58, 59syl22anc 1234 . . . . 5 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀}))
613, 4zfz1isolemsplit 10773 . . . . . . 7 (𝜑 → (1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)}))
62 fidifsnid 6849 . . . . . . . . 9 ((𝑋 ∈ Fin ∧ 𝑀𝑋) → ((𝑋 ∖ {𝑀}) ∪ {𝑀}) = 𝑋)
633, 4, 62syl2anc 409 . . . . . . . 8 (𝜑 → ((𝑋 ∖ {𝑀}) ∪ {𝑀}) = 𝑋)
6463eqcomd 2176 . . . . . . 7 (𝜑𝑋 = ((𝑋 ∖ {𝑀}) ∪ {𝑀}))
65 f1oeq23 5434 . . . . . . 7 (((1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)}) ∧ 𝑋 = ((𝑋 ∖ {𝑀}) ∪ {𝑀})) → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):(1...(♯‘𝑋))–1-1-onto𝑋 ↔ (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀})))
6661, 64, 65syl2anc 409 . . . . . 6 (𝜑 → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):(1...(♯‘𝑋))–1-1-onto𝑋 ↔ (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀})))
6766adantr 274 . . . . 5 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):(1...(♯‘𝑋))–1-1-onto𝑋 ↔ (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀})))
6860, 67mpbird 166 . . . 4 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):(1...(♯‘𝑋))–1-1-onto𝑋)
693ad2antrr 485 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑋 ∈ Fin)
701ad2antrr 485 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑋 ⊆ ℤ)
714ad2antrr 485 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑀𝑋)
72 zfz1isolem1.m . . . . . . 7 (𝜑 → ∀𝑧𝑋 𝑧𝑀)
7372ad2antrr 485 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → ∀𝑧𝑋 𝑧𝑀)
74 simplr 525 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))
75 simprl 526 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑎 ∈ (1...(♯‘𝑋)))
76 simprr 527 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑏 ∈ (1...(♯‘𝑋)))
7769, 70, 71, 73, 74, 75, 76zfz1isolemiso 10774 . . . . 5 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → (𝑎 < 𝑏 ↔ ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑎) < ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑏)))
7877ralrimivva 2552 . . . 4 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ∀𝑎 ∈ (1...(♯‘𝑋))∀𝑏 ∈ (1...(♯‘𝑋))(𝑎 < 𝑏 ↔ ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑎) < ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑏)))
79 df-isom 5207 . . . 4 ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋) ↔ ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):(1...(♯‘𝑋))–1-1-onto𝑋 ∧ ∀𝑎 ∈ (1...(♯‘𝑋))∀𝑏 ∈ (1...(♯‘𝑋))(𝑎 < 𝑏 ↔ ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑎) < ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑏))))
8068, 78, 79sylanbrc 415 . . 3 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋))
81 vex 2733 . . . . . . 7 𝑔 ∈ V
8281a1i 9 . . . . . 6 (𝜑𝑔 ∈ V)
83 opexg 4213 . . . . . . . 8 (((♯‘𝑋) ∈ ℕ0𝑀𝑋) → ⟨(♯‘𝑋), 𝑀⟩ ∈ V)
8438, 4, 83syl2anc 409 . . . . . . 7 (𝜑 → ⟨(♯‘𝑋), 𝑀⟩ ∈ V)
85 snexg 4170 . . . . . . 7 (⟨(♯‘𝑋), 𝑀⟩ ∈ V → {⟨(♯‘𝑋), 𝑀⟩} ∈ V)
8684, 85syl 14 . . . . . 6 (𝜑 → {⟨(♯‘𝑋), 𝑀⟩} ∈ V)
87 unexg 4428 . . . . . 6 ((𝑔 ∈ V ∧ {⟨(♯‘𝑋), 𝑀⟩} ∈ V) → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) ∈ V)
8882, 86, 87syl2anc 409 . . . . 5 (𝜑 → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) ∈ V)
89 isoeq1 5780 . . . . . 6 (𝑓 = (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) → (𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋) ↔ (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋)))
9089spcegv 2818 . . . . 5 ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) ∈ V → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋)))
9188, 90syl 14 . . . 4 (𝜑 → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋)))
9291adantr 274 . . 3 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋)))
9380, 92mpd 13 . 2 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋))
9432, 93exlimddv 1891 1 (𝜑 → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1346   = wceq 1348  wex 1485  wcel 2141  wral 2448  Vcvv 2730  cdif 3118  cun 3119  cin 3120  wss 3121  c0 3414  {csn 3583  cop 3586   class class class wbr 3989  suc csuc 4350  ωcom 4574  1-1-ontowf1o 5197  cfv 5198   Isom wiso 5199  (class class class)co 5853  cen 6716  Fincfn 6718  1c1 7775   + caddc 7777   < clt 7954  cle 7955  cmin 8090  0cn0 9135  cz 9212  ...cfz 9965  chash 10709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-ihash 10710
This theorem is referenced by:  zfz1iso  10776
  Copyright terms: Public domain W3C validator