| Step | Hyp | Ref
| Expression |
| 1 | | zfz1isolem1.xz |
. . . . . 6
⊢ (𝜑 → 𝑋 ⊆ ℤ) |
| 2 | 1 | ssdifssd 3302 |
. . . . 5
⊢ (𝜑 → (𝑋 ∖ {𝑀}) ⊆ ℤ) |
| 3 | | zfz1isolem1.xf |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ Fin) |
| 4 | | zfz1isolem1.mx |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ 𝑋) |
| 5 | | diffisn 6963 |
. . . . . 6
⊢ ((𝑋 ∈ Fin ∧ 𝑀 ∈ 𝑋) → (𝑋 ∖ {𝑀}) ∈ Fin) |
| 6 | 3, 4, 5 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → (𝑋 ∖ {𝑀}) ∈ Fin) |
| 7 | | zfz1isolem1.k |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ ω) |
| 8 | | zfz1isolem1.xs |
. . . . . 6
⊢ (𝜑 → 𝑋 ≈ suc 𝐾) |
| 9 | | dif1en 6949 |
. . . . . 6
⊢ ((𝐾 ∈ ω ∧ 𝑋 ≈ suc 𝐾 ∧ 𝑀 ∈ 𝑋) → (𝑋 ∖ {𝑀}) ≈ 𝐾) |
| 10 | 7, 8, 4, 9 | syl3anc 1249 |
. . . . 5
⊢ (𝜑 → (𝑋 ∖ {𝑀}) ≈ 𝐾) |
| 11 | 2, 6, 10 | jca31 309 |
. . . 4
⊢ (𝜑 → (((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾)) |
| 12 | | zfz1isolem1.h |
. . . . 5
⊢ (𝜑 → ∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦 ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦))) |
| 13 | | sseq1 3207 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑋 ∖ {𝑀}) → (𝑦 ⊆ ℤ ↔ (𝑋 ∖ {𝑀}) ⊆ ℤ)) |
| 14 | | eleq1 2259 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑋 ∖ {𝑀}) → (𝑦 ∈ Fin ↔ (𝑋 ∖ {𝑀}) ∈ Fin)) |
| 15 | 13, 14 | anbi12d 473 |
. . . . . . . . 9
⊢ (𝑦 = (𝑋 ∖ {𝑀}) → ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ↔ ((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin))) |
| 16 | | breq1 4037 |
. . . . . . . . 9
⊢ (𝑦 = (𝑋 ∖ {𝑀}) → (𝑦 ≈ 𝐾 ↔ (𝑋 ∖ {𝑀}) ≈ 𝐾)) |
| 17 | 15, 16 | anbi12d 473 |
. . . . . . . 8
⊢ (𝑦 = (𝑋 ∖ {𝑀}) → (((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦 ≈ 𝐾) ↔ (((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾))) |
| 18 | | fveq2 5561 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑋 ∖ {𝑀}) → (♯‘𝑦) = (♯‘(𝑋 ∖ {𝑀}))) |
| 19 | 18 | oveq2d 5941 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑋 ∖ {𝑀}) → (1...(♯‘𝑦)) = (1...(♯‘(𝑋 ∖ {𝑀})))) |
| 20 | | isoeq4 5854 |
. . . . . . . . . . 11
⊢
((1...(♯‘𝑦)) = (1...(♯‘(𝑋 ∖ {𝑀}))) → (𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦) ↔ 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), 𝑦))) |
| 21 | 19, 20 | syl 14 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑋 ∖ {𝑀}) → (𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦) ↔ 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), 𝑦))) |
| 22 | | isoeq5 5855 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑋 ∖ {𝑀}) → (𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), 𝑦) ↔ 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))) |
| 23 | 21, 22 | bitrd 188 |
. . . . . . . . 9
⊢ (𝑦 = (𝑋 ∖ {𝑀}) → (𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦) ↔ 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))) |
| 24 | 23 | exbidv 1839 |
. . . . . . . 8
⊢ (𝑦 = (𝑋 ∖ {𝑀}) → (∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦) ↔ ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))) |
| 25 | 17, 24 | imbi12d 234 |
. . . . . . 7
⊢ (𝑦 = (𝑋 ∖ {𝑀}) → ((((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦 ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)) ↔ ((((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))) |
| 26 | 25 | spcgv 2851 |
. . . . . 6
⊢ ((𝑋 ∖ {𝑀}) ∈ Fin → (∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦 ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)) → ((((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))) |
| 27 | 6, 26 | syl 14 |
. . . . 5
⊢ (𝜑 → (∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦 ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)) → ((((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))) |
| 28 | 12, 27 | mpd 13 |
. . . 4
⊢ (𝜑 → ((((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))) |
| 29 | 11, 28 | mpd 13 |
. . 3
⊢ (𝜑 → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) |
| 30 | | isoeq1 5851 |
. . . 4
⊢ (𝑓 = 𝑔 → (𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})) ↔ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))) |
| 31 | 30 | cbvexv 1933 |
. . 3
⊢
(∃𝑓 𝑓 Isom < , <
((1...(♯‘(𝑋
∖ {𝑀}))), (𝑋 ∖ {𝑀})) ↔ ∃𝑔 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) |
| 32 | 29, 31 | sylib 122 |
. 2
⊢ (𝜑 → ∃𝑔 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) |
| 33 | | df-isom 5268 |
. . . . . . . . 9
⊢ (𝑔 Isom < , <
((1...(♯‘(𝑋
∖ {𝑀}))), (𝑋 ∖ {𝑀})) ↔ (𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}) ∧ ∀𝑢 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))∀𝑣 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))(𝑢 < 𝑣 ↔ (𝑔‘𝑢) < (𝑔‘𝑣)))) |
| 34 | 33 | biimpi 120 |
. . . . . . . 8
⊢ (𝑔 Isom < , <
((1...(♯‘(𝑋
∖ {𝑀}))), (𝑋 ∖ {𝑀})) → (𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}) ∧ ∀𝑢 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))∀𝑣 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))(𝑢 < 𝑣 ↔ (𝑔‘𝑢) < (𝑔‘𝑣)))) |
| 35 | 34 | adantl 277 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}) ∧ ∀𝑢 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))∀𝑣 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))(𝑢 < 𝑣 ↔ (𝑔‘𝑢) < (𝑔‘𝑣)))) |
| 36 | 35 | simpld 112 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → 𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀})) |
| 37 | | hashcl 10890 |
. . . . . . . . 9
⊢ (𝑋 ∈ Fin →
(♯‘𝑋) ∈
ℕ0) |
| 38 | 3, 37 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → (♯‘𝑋) ∈
ℕ0) |
| 39 | 38 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (♯‘𝑋) ∈
ℕ0) |
| 40 | 4 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → 𝑀 ∈ 𝑋) |
| 41 | | f1osng 5548 |
. . . . . . 7
⊢
(((♯‘𝑋)
∈ ℕ0 ∧ 𝑀 ∈ 𝑋) → {〈(♯‘𝑋), 𝑀〉}:{(♯‘𝑋)}–1-1-onto→{𝑀}) |
| 42 | 39, 40, 41 | syl2anc 411 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → {〈(♯‘𝑋), 𝑀〉}:{(♯‘𝑋)}–1-1-onto→{𝑀}) |
| 43 | | hashdifsn 10928 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ Fin ∧ 𝑀 ∈ 𝑋) → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1)) |
| 44 | 3, 4, 43 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1)) |
| 45 | 44 | oveq1d 5940 |
. . . . . . . . . . 11
⊢ (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (((♯‘𝑋) − 1) +
1)) |
| 46 | 38 | nn0cnd 9321 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘𝑋) ∈
ℂ) |
| 47 | | 1cnd 8059 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℂ) |
| 48 | 46, 47 | npcand 8358 |
. . . . . . . . . . 11
⊢ (𝜑 → (((♯‘𝑋) − 1) + 1) =
(♯‘𝑋)) |
| 49 | 45, 48 | eqtrd 2229 |
. . . . . . . . . 10
⊢ (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (♯‘𝑋)) |
| 50 | 49 | sneqd 3636 |
. . . . . . . . 9
⊢ (𝜑 → {((♯‘(𝑋 ∖ {𝑀})) + 1)} = {(♯‘𝑋)}) |
| 51 | 50 | ineq2d 3365 |
. . . . . . . 8
⊢ (𝜑 →
((1...(♯‘(𝑋
∖ {𝑀}))) ∩
{((♯‘(𝑋 ∖
{𝑀})) + 1)}) =
((1...(♯‘(𝑋
∖ {𝑀}))) ∩
{(♯‘𝑋)})) |
| 52 | | fzp1disj 10172 |
. . . . . . . 8
⊢
((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {((♯‘(𝑋 ∖ {𝑀})) + 1)}) = ∅ |
| 53 | 51, 52 | eqtr3di 2244 |
. . . . . . 7
⊢ (𝜑 →
((1...(♯‘(𝑋
∖ {𝑀}))) ∩
{(♯‘𝑋)}) =
∅) |
| 54 | 53 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {(♯‘𝑋)}) = ∅) |
| 55 | | incom 3356 |
. . . . . . . 8
⊢ ((𝑋 ∖ {𝑀}) ∩ {𝑀}) = ({𝑀} ∩ (𝑋 ∖ {𝑀})) |
| 56 | | disjdif 3524 |
. . . . . . . 8
⊢ ({𝑀} ∩ (𝑋 ∖ {𝑀})) = ∅ |
| 57 | 55, 56 | eqtri 2217 |
. . . . . . 7
⊢ ((𝑋 ∖ {𝑀}) ∩ {𝑀}) = ∅ |
| 58 | 57 | a1i 9 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ((𝑋 ∖ {𝑀}) ∩ {𝑀}) = ∅) |
| 59 | | f1oun 5527 |
. . . . . 6
⊢ (((𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}) ∧ {〈(♯‘𝑋), 𝑀〉}:{(♯‘𝑋)}–1-1-onto→{𝑀}) ∧ (((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {(♯‘𝑋)}) = ∅ ∧ ((𝑋 ∖ {𝑀}) ∩ {𝑀}) = ∅)) → (𝑔 ∪ {〈(♯‘𝑋), 𝑀〉}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀})) |
| 60 | 36, 42, 54, 58, 59 | syl22anc 1250 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (𝑔 ∪ {〈(♯‘𝑋), 𝑀〉}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀})) |
| 61 | 3, 4 | zfz1isolemsplit 10947 |
. . . . . . 7
⊢ (𝜑 → (1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})) |
| 62 | | fidifsnid 6941 |
. . . . . . . . 9
⊢ ((𝑋 ∈ Fin ∧ 𝑀 ∈ 𝑋) → ((𝑋 ∖ {𝑀}) ∪ {𝑀}) = 𝑋) |
| 63 | 3, 4, 62 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → ((𝑋 ∖ {𝑀}) ∪ {𝑀}) = 𝑋) |
| 64 | 63 | eqcomd 2202 |
. . . . . . 7
⊢ (𝜑 → 𝑋 = ((𝑋 ∖ {𝑀}) ∪ {𝑀})) |
| 65 | | f1oeq23 5498 |
. . . . . . 7
⊢
(((1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)}) ∧ 𝑋 = ((𝑋 ∖ {𝑀}) ∪ {𝑀})) → ((𝑔 ∪ {〈(♯‘𝑋), 𝑀〉}):(1...(♯‘𝑋))–1-1-onto→𝑋 ↔ (𝑔 ∪ {〈(♯‘𝑋), 𝑀〉}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀}))) |
| 66 | 61, 64, 65 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → ((𝑔 ∪ {〈(♯‘𝑋), 𝑀〉}):(1...(♯‘𝑋))–1-1-onto→𝑋 ↔ (𝑔 ∪ {〈(♯‘𝑋), 𝑀〉}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀}))) |
| 67 | 66 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ((𝑔 ∪ {〈(♯‘𝑋), 𝑀〉}):(1...(♯‘𝑋))–1-1-onto→𝑋 ↔ (𝑔 ∪ {〈(♯‘𝑋), 𝑀〉}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀}))) |
| 68 | 60, 67 | mpbird 167 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (𝑔 ∪ {〈(♯‘𝑋), 𝑀〉}):(1...(♯‘𝑋))–1-1-onto→𝑋) |
| 69 | 3 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑋 ∈ Fin) |
| 70 | 1 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑋 ⊆ ℤ) |
| 71 | 4 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑀 ∈ 𝑋) |
| 72 | | zfz1isolem1.m |
. . . . . . 7
⊢ (𝜑 → ∀𝑧 ∈ 𝑋 𝑧 ≤ 𝑀) |
| 73 | 72 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → ∀𝑧 ∈ 𝑋 𝑧 ≤ 𝑀) |
| 74 | | simplr 528 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) |
| 75 | | simprl 529 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑎 ∈ (1...(♯‘𝑋))) |
| 76 | | simprr 531 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑏 ∈ (1...(♯‘𝑋))) |
| 77 | 69, 70, 71, 73, 74, 75, 76 | zfz1isolemiso 10948 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → (𝑎 < 𝑏 ↔ ((𝑔 ∪ {〈(♯‘𝑋), 𝑀〉})‘𝑎) < ((𝑔 ∪ {〈(♯‘𝑋), 𝑀〉})‘𝑏))) |
| 78 | 77 | ralrimivva 2579 |
. . . 4
⊢ ((𝜑 ∧ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ∀𝑎 ∈ (1...(♯‘𝑋))∀𝑏 ∈ (1...(♯‘𝑋))(𝑎 < 𝑏 ↔ ((𝑔 ∪ {〈(♯‘𝑋), 𝑀〉})‘𝑎) < ((𝑔 ∪ {〈(♯‘𝑋), 𝑀〉})‘𝑏))) |
| 79 | | df-isom 5268 |
. . . 4
⊢ ((𝑔 ∪
{〈(♯‘𝑋),
𝑀〉}) Isom < , <
((1...(♯‘𝑋)),
𝑋) ↔ ((𝑔 ∪
{〈(♯‘𝑋),
𝑀〉}):(1...(♯‘𝑋))–1-1-onto→𝑋 ∧ ∀𝑎 ∈
(1...(♯‘𝑋))∀𝑏 ∈ (1...(♯‘𝑋))(𝑎 < 𝑏 ↔ ((𝑔 ∪ {〈(♯‘𝑋), 𝑀〉})‘𝑎) < ((𝑔 ∪ {〈(♯‘𝑋), 𝑀〉})‘𝑏)))) |
| 80 | 68, 78, 79 | sylanbrc 417 |
. . 3
⊢ ((𝜑 ∧ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (𝑔 ∪ {〈(♯‘𝑋), 𝑀〉}) Isom < , <
((1...(♯‘𝑋)),
𝑋)) |
| 81 | | vex 2766 |
. . . . . . 7
⊢ 𝑔 ∈ V |
| 82 | 81 | a1i 9 |
. . . . . 6
⊢ (𝜑 → 𝑔 ∈ V) |
| 83 | | opexg 4262 |
. . . . . . . 8
⊢
(((♯‘𝑋)
∈ ℕ0 ∧ 𝑀 ∈ 𝑋) → 〈(♯‘𝑋), 𝑀〉 ∈ V) |
| 84 | 38, 4, 83 | syl2anc 411 |
. . . . . . 7
⊢ (𝜑 → 〈(♯‘𝑋), 𝑀〉 ∈ V) |
| 85 | | snexg 4218 |
. . . . . . 7
⊢
(〈(♯‘𝑋), 𝑀〉 ∈ V →
{〈(♯‘𝑋),
𝑀〉} ∈
V) |
| 86 | 84, 85 | syl 14 |
. . . . . 6
⊢ (𝜑 →
{〈(♯‘𝑋),
𝑀〉} ∈
V) |
| 87 | | unexg 4479 |
. . . . . 6
⊢ ((𝑔 ∈ V ∧
{〈(♯‘𝑋),
𝑀〉} ∈ V) →
(𝑔 ∪
{〈(♯‘𝑋),
𝑀〉}) ∈
V) |
| 88 | 82, 86, 87 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → (𝑔 ∪ {〈(♯‘𝑋), 𝑀〉}) ∈ V) |
| 89 | | isoeq1 5851 |
. . . . . 6
⊢ (𝑓 = (𝑔 ∪ {〈(♯‘𝑋), 𝑀〉}) → (𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋) ↔ (𝑔 ∪ {〈(♯‘𝑋), 𝑀〉}) Isom < , <
((1...(♯‘𝑋)),
𝑋))) |
| 90 | 89 | spcegv 2852 |
. . . . 5
⊢ ((𝑔 ∪
{〈(♯‘𝑋),
𝑀〉}) ∈ V →
((𝑔 ∪
{〈(♯‘𝑋),
𝑀〉}) Isom < , <
((1...(♯‘𝑋)),
𝑋) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋))) |
| 91 | 88, 90 | syl 14 |
. . . 4
⊢ (𝜑 → ((𝑔 ∪ {〈(♯‘𝑋), 𝑀〉}) Isom < , <
((1...(♯‘𝑋)),
𝑋) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋))) |
| 92 | 91 | adantr 276 |
. . 3
⊢ ((𝜑 ∧ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ((𝑔 ∪ {〈(♯‘𝑋), 𝑀〉}) Isom < , <
((1...(♯‘𝑋)),
𝑋) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋))) |
| 93 | 80, 92 | mpd 13 |
. 2
⊢ ((𝜑 ∧ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋)) |
| 94 | 32, 93 | exlimddv 1913 |
1
⊢ (𝜑 → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋)) |