ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfz1isolem1 GIF version

Theorem zfz1isolem1 10615
Description: Lemma for zfz1iso 10616. Existence of an order isomorphism given the existence of shorter isomorphisms. (Contributed by Jim Kingdon, 7-Sep-2022.)
Hypotheses
Ref Expression
zfz1isolem1.k (𝜑𝐾 ∈ ω)
zfz1isolem1.h (𝜑 → ∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)))
zfz1isolem1.xz (𝜑𝑋 ⊆ ℤ)
zfz1isolem1.xf (𝜑𝑋 ∈ Fin)
zfz1isolem1.xs (𝜑𝑋 ≈ suc 𝐾)
zfz1isolem1.mx (𝜑𝑀𝑋)
zfz1isolem1.m (𝜑 → ∀𝑧𝑋 𝑧𝑀)
Assertion
Ref Expression
zfz1isolem1 (𝜑 → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋))
Distinct variable groups:   𝑦,𝐾   𝑧,𝑀   𝑓,𝑀,𝑦   𝑧,𝑋   𝑓,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑓)   𝐾(𝑧,𝑓)

Proof of Theorem zfz1isolem1
Dummy variables 𝑎 𝑏 𝑔 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zfz1isolem1.xz . . . . . 6 (𝜑𝑋 ⊆ ℤ)
21ssdifssd 3219 . . . . 5 (𝜑 → (𝑋 ∖ {𝑀}) ⊆ ℤ)
3 zfz1isolem1.xf . . . . . 6 (𝜑𝑋 ∈ Fin)
4 zfz1isolem1.mx . . . . . 6 (𝜑𝑀𝑋)
5 diffisn 6795 . . . . . 6 ((𝑋 ∈ Fin ∧ 𝑀𝑋) → (𝑋 ∖ {𝑀}) ∈ Fin)
63, 4, 5syl2anc 409 . . . . 5 (𝜑 → (𝑋 ∖ {𝑀}) ∈ Fin)
7 zfz1isolem1.k . . . . . 6 (𝜑𝐾 ∈ ω)
8 zfz1isolem1.xs . . . . . 6 (𝜑𝑋 ≈ suc 𝐾)
9 dif1en 6781 . . . . . 6 ((𝐾 ∈ ω ∧ 𝑋 ≈ suc 𝐾𝑀𝑋) → (𝑋 ∖ {𝑀}) ≈ 𝐾)
107, 8, 4, 9syl3anc 1217 . . . . 5 (𝜑 → (𝑋 ∖ {𝑀}) ≈ 𝐾)
112, 6, 10jca31 307 . . . 4 (𝜑 → (((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾))
12 zfz1isolem1.h . . . . 5 (𝜑 → ∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)))
13 sseq1 3125 . . . . . . . . . 10 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑦 ⊆ ℤ ↔ (𝑋 ∖ {𝑀}) ⊆ ℤ))
14 eleq1 2203 . . . . . . . . . 10 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑦 ∈ Fin ↔ (𝑋 ∖ {𝑀}) ∈ Fin))
1513, 14anbi12d 465 . . . . . . . . 9 (𝑦 = (𝑋 ∖ {𝑀}) → ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ↔ ((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin)))
16 breq1 3940 . . . . . . . . 9 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑦𝐾 ↔ (𝑋 ∖ {𝑀}) ≈ 𝐾))
1715, 16anbi12d 465 . . . . . . . 8 (𝑦 = (𝑋 ∖ {𝑀}) → (((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) ↔ (((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾)))
18 fveq2 5429 . . . . . . . . . . . 12 (𝑦 = (𝑋 ∖ {𝑀}) → (♯‘𝑦) = (♯‘(𝑋 ∖ {𝑀})))
1918oveq2d 5798 . . . . . . . . . . 11 (𝑦 = (𝑋 ∖ {𝑀}) → (1...(♯‘𝑦)) = (1...(♯‘(𝑋 ∖ {𝑀}))))
20 isoeq4 5713 . . . . . . . . . . 11 ((1...(♯‘𝑦)) = (1...(♯‘(𝑋 ∖ {𝑀}))) → (𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦) ↔ 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), 𝑦)))
2119, 20syl 14 . . . . . . . . . 10 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦) ↔ 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), 𝑦)))
22 isoeq5 5714 . . . . . . . . . 10 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), 𝑦) ↔ 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))
2321, 22bitrd 187 . . . . . . . . 9 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦) ↔ 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))
2423exbidv 1798 . . . . . . . 8 (𝑦 = (𝑋 ∖ {𝑀}) → (∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦) ↔ ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))
2517, 24imbi12d 233 . . . . . . 7 (𝑦 = (𝑋 ∖ {𝑀}) → ((((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)) ↔ ((((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))))
2625spcgv 2776 . . . . . 6 ((𝑋 ∖ {𝑀}) ∈ Fin → (∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)) → ((((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))))
276, 26syl 14 . . . . 5 (𝜑 → (∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)) → ((((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))))
2812, 27mpd 13 . . . 4 (𝜑 → ((((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))
2911, 28mpd 13 . . 3 (𝜑 → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))
30 isoeq1 5710 . . . 4 (𝑓 = 𝑔 → (𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})) ↔ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))
3130cbvexv 1891 . . 3 (∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})) ↔ ∃𝑔 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))
3229, 31sylib 121 . 2 (𝜑 → ∃𝑔 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))
33 df-isom 5140 . . . . . . . . 9 (𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})) ↔ (𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}) ∧ ∀𝑢 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))∀𝑣 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))(𝑢 < 𝑣 ↔ (𝑔𝑢) < (𝑔𝑣))))
3433biimpi 119 . . . . . . . 8 (𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})) → (𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}) ∧ ∀𝑢 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))∀𝑣 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))(𝑢 < 𝑣 ↔ (𝑔𝑢) < (𝑔𝑣))))
3534adantl 275 . . . . . . 7 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}) ∧ ∀𝑢 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))∀𝑣 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))(𝑢 < 𝑣 ↔ (𝑔𝑢) < (𝑔𝑣))))
3635simpld 111 . . . . . 6 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → 𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}))
37 hashcl 10559 . . . . . . . . 9 (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0)
383, 37syl 14 . . . . . . . 8 (𝜑 → (♯‘𝑋) ∈ ℕ0)
3938adantr 274 . . . . . . 7 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (♯‘𝑋) ∈ ℕ0)
404adantr 274 . . . . . . 7 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → 𝑀𝑋)
41 f1osng 5416 . . . . . . 7 (((♯‘𝑋) ∈ ℕ0𝑀𝑋) → {⟨(♯‘𝑋), 𝑀⟩}:{(♯‘𝑋)}–1-1-onto→{𝑀})
4239, 40, 41syl2anc 409 . . . . . 6 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → {⟨(♯‘𝑋), 𝑀⟩}:{(♯‘𝑋)}–1-1-onto→{𝑀})
43 fzp1disj 9891 . . . . . . . 8 ((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {((♯‘(𝑋 ∖ {𝑀})) + 1)}) = ∅
44 hashdifsn 10597 . . . . . . . . . . . . 13 ((𝑋 ∈ Fin ∧ 𝑀𝑋) → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1))
453, 4, 44syl2anc 409 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1))
4645oveq1d 5797 . . . . . . . . . . 11 (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (((♯‘𝑋) − 1) + 1))
4738nn0cnd 9056 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑋) ∈ ℂ)
48 1cnd 7806 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
4947, 48npcand 8101 . . . . . . . . . . 11 (𝜑 → (((♯‘𝑋) − 1) + 1) = (♯‘𝑋))
5046, 49eqtrd 2173 . . . . . . . . . 10 (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (♯‘𝑋))
5150sneqd 3545 . . . . . . . . 9 (𝜑 → {((♯‘(𝑋 ∖ {𝑀})) + 1)} = {(♯‘𝑋)})
5251ineq2d 3282 . . . . . . . 8 (𝜑 → ((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {((♯‘(𝑋 ∖ {𝑀})) + 1)}) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {(♯‘𝑋)}))
5343, 52syl5reqr 2188 . . . . . . 7 (𝜑 → ((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {(♯‘𝑋)}) = ∅)
5453adantr 274 . . . . . 6 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {(♯‘𝑋)}) = ∅)
55 incom 3273 . . . . . . . 8 ((𝑋 ∖ {𝑀}) ∩ {𝑀}) = ({𝑀} ∩ (𝑋 ∖ {𝑀}))
56 disjdif 3440 . . . . . . . 8 ({𝑀} ∩ (𝑋 ∖ {𝑀})) = ∅
5755, 56eqtri 2161 . . . . . . 7 ((𝑋 ∖ {𝑀}) ∩ {𝑀}) = ∅
5857a1i 9 . . . . . 6 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ((𝑋 ∖ {𝑀}) ∩ {𝑀}) = ∅)
59 f1oun 5395 . . . . . 6 (((𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}) ∧ {⟨(♯‘𝑋), 𝑀⟩}:{(♯‘𝑋)}–1-1-onto→{𝑀}) ∧ (((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {(♯‘𝑋)}) = ∅ ∧ ((𝑋 ∖ {𝑀}) ∩ {𝑀}) = ∅)) → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀}))
6036, 42, 54, 58, 59syl22anc 1218 . . . . 5 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀}))
613, 4zfz1isolemsplit 10613 . . . . . . 7 (𝜑 → (1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)}))
62 fidifsnid 6773 . . . . . . . . 9 ((𝑋 ∈ Fin ∧ 𝑀𝑋) → ((𝑋 ∖ {𝑀}) ∪ {𝑀}) = 𝑋)
633, 4, 62syl2anc 409 . . . . . . . 8 (𝜑 → ((𝑋 ∖ {𝑀}) ∪ {𝑀}) = 𝑋)
6463eqcomd 2146 . . . . . . 7 (𝜑𝑋 = ((𝑋 ∖ {𝑀}) ∪ {𝑀}))
65 f1oeq23 5367 . . . . . . 7 (((1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)}) ∧ 𝑋 = ((𝑋 ∖ {𝑀}) ∪ {𝑀})) → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):(1...(♯‘𝑋))–1-1-onto𝑋 ↔ (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀})))
6661, 64, 65syl2anc 409 . . . . . 6 (𝜑 → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):(1...(♯‘𝑋))–1-1-onto𝑋 ↔ (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀})))
6766adantr 274 . . . . 5 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):(1...(♯‘𝑋))–1-1-onto𝑋 ↔ (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀})))
6860, 67mpbird 166 . . . 4 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):(1...(♯‘𝑋))–1-1-onto𝑋)
693ad2antrr 480 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑋 ∈ Fin)
701ad2antrr 480 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑋 ⊆ ℤ)
714ad2antrr 480 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑀𝑋)
72 zfz1isolem1.m . . . . . . 7 (𝜑 → ∀𝑧𝑋 𝑧𝑀)
7372ad2antrr 480 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → ∀𝑧𝑋 𝑧𝑀)
74 simplr 520 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))
75 simprl 521 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑎 ∈ (1...(♯‘𝑋)))
76 simprr 522 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑏 ∈ (1...(♯‘𝑋)))
7769, 70, 71, 73, 74, 75, 76zfz1isolemiso 10614 . . . . 5 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → (𝑎 < 𝑏 ↔ ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑎) < ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑏)))
7877ralrimivva 2517 . . . 4 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ∀𝑎 ∈ (1...(♯‘𝑋))∀𝑏 ∈ (1...(♯‘𝑋))(𝑎 < 𝑏 ↔ ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑎) < ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑏)))
79 df-isom 5140 . . . 4 ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋) ↔ ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):(1...(♯‘𝑋))–1-1-onto𝑋 ∧ ∀𝑎 ∈ (1...(♯‘𝑋))∀𝑏 ∈ (1...(♯‘𝑋))(𝑎 < 𝑏 ↔ ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑎) < ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑏))))
8068, 78, 79sylanbrc 414 . . 3 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋))
81 vex 2692 . . . . . . 7 𝑔 ∈ V
8281a1i 9 . . . . . 6 (𝜑𝑔 ∈ V)
83 opexg 4158 . . . . . . . 8 (((♯‘𝑋) ∈ ℕ0𝑀𝑋) → ⟨(♯‘𝑋), 𝑀⟩ ∈ V)
8438, 4, 83syl2anc 409 . . . . . . 7 (𝜑 → ⟨(♯‘𝑋), 𝑀⟩ ∈ V)
85 snexg 4116 . . . . . . 7 (⟨(♯‘𝑋), 𝑀⟩ ∈ V → {⟨(♯‘𝑋), 𝑀⟩} ∈ V)
8684, 85syl 14 . . . . . 6 (𝜑 → {⟨(♯‘𝑋), 𝑀⟩} ∈ V)
87 unexg 4372 . . . . . 6 ((𝑔 ∈ V ∧ {⟨(♯‘𝑋), 𝑀⟩} ∈ V) → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) ∈ V)
8882, 86, 87syl2anc 409 . . . . 5 (𝜑 → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) ∈ V)
89 isoeq1 5710 . . . . . 6 (𝑓 = (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) → (𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋) ↔ (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋)))
9089spcegv 2777 . . . . 5 ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) ∈ V → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋)))
9188, 90syl 14 . . . 4 (𝜑 → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋)))
9291adantr 274 . . 3 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋)))
9380, 92mpd 13 . 2 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋))
9432, 93exlimddv 1871 1 (𝜑 → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1330   = wceq 1332  wex 1469  wcel 1481  wral 2417  Vcvv 2689  cdif 3073  cun 3074  cin 3075  wss 3076  c0 3368  {csn 3532  cop 3535   class class class wbr 3937  suc csuc 4295  ωcom 4512  1-1-ontowf1o 5130  cfv 5131   Isom wiso 5132  (class class class)co 5782  cen 6640  Fincfn 6642  1c1 7645   + caddc 7647   < clt 7824  cle 7825  cmin 7957  0cn0 9001  cz 9078  ...cfz 9821  chash 10553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822  df-ihash 10554
This theorem is referenced by:  zfz1iso  10616
  Copyright terms: Public domain W3C validator