ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfz1isolem1 GIF version

Theorem zfz1isolem1 10911
Description: Lemma for zfz1iso 10912. Existence of an order isomorphism given the existence of shorter isomorphisms. (Contributed by Jim Kingdon, 7-Sep-2022.)
Hypotheses
Ref Expression
zfz1isolem1.k (𝜑𝐾 ∈ ω)
zfz1isolem1.h (𝜑 → ∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)))
zfz1isolem1.xz (𝜑𝑋 ⊆ ℤ)
zfz1isolem1.xf (𝜑𝑋 ∈ Fin)
zfz1isolem1.xs (𝜑𝑋 ≈ suc 𝐾)
zfz1isolem1.mx (𝜑𝑀𝑋)
zfz1isolem1.m (𝜑 → ∀𝑧𝑋 𝑧𝑀)
Assertion
Ref Expression
zfz1isolem1 (𝜑 → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋))
Distinct variable groups:   𝑦,𝐾   𝑧,𝑀   𝑓,𝑀,𝑦   𝑧,𝑋   𝑓,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑓)   𝐾(𝑧,𝑓)

Proof of Theorem zfz1isolem1
Dummy variables 𝑎 𝑏 𝑔 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zfz1isolem1.xz . . . . . 6 (𝜑𝑋 ⊆ ℤ)
21ssdifssd 3297 . . . . 5 (𝜑 → (𝑋 ∖ {𝑀}) ⊆ ℤ)
3 zfz1isolem1.xf . . . . . 6 (𝜑𝑋 ∈ Fin)
4 zfz1isolem1.mx . . . . . 6 (𝜑𝑀𝑋)
5 diffisn 6949 . . . . . 6 ((𝑋 ∈ Fin ∧ 𝑀𝑋) → (𝑋 ∖ {𝑀}) ∈ Fin)
63, 4, 5syl2anc 411 . . . . 5 (𝜑 → (𝑋 ∖ {𝑀}) ∈ Fin)
7 zfz1isolem1.k . . . . . 6 (𝜑𝐾 ∈ ω)
8 zfz1isolem1.xs . . . . . 6 (𝜑𝑋 ≈ suc 𝐾)
9 dif1en 6935 . . . . . 6 ((𝐾 ∈ ω ∧ 𝑋 ≈ suc 𝐾𝑀𝑋) → (𝑋 ∖ {𝑀}) ≈ 𝐾)
107, 8, 4, 9syl3anc 1249 . . . . 5 (𝜑 → (𝑋 ∖ {𝑀}) ≈ 𝐾)
112, 6, 10jca31 309 . . . 4 (𝜑 → (((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾))
12 zfz1isolem1.h . . . . 5 (𝜑 → ∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)))
13 sseq1 3202 . . . . . . . . . 10 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑦 ⊆ ℤ ↔ (𝑋 ∖ {𝑀}) ⊆ ℤ))
14 eleq1 2256 . . . . . . . . . 10 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑦 ∈ Fin ↔ (𝑋 ∖ {𝑀}) ∈ Fin))
1513, 14anbi12d 473 . . . . . . . . 9 (𝑦 = (𝑋 ∖ {𝑀}) → ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ↔ ((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin)))
16 breq1 4032 . . . . . . . . 9 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑦𝐾 ↔ (𝑋 ∖ {𝑀}) ≈ 𝐾))
1715, 16anbi12d 473 . . . . . . . 8 (𝑦 = (𝑋 ∖ {𝑀}) → (((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) ↔ (((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾)))
18 fveq2 5554 . . . . . . . . . . . 12 (𝑦 = (𝑋 ∖ {𝑀}) → (♯‘𝑦) = (♯‘(𝑋 ∖ {𝑀})))
1918oveq2d 5934 . . . . . . . . . . 11 (𝑦 = (𝑋 ∖ {𝑀}) → (1...(♯‘𝑦)) = (1...(♯‘(𝑋 ∖ {𝑀}))))
20 isoeq4 5847 . . . . . . . . . . 11 ((1...(♯‘𝑦)) = (1...(♯‘(𝑋 ∖ {𝑀}))) → (𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦) ↔ 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), 𝑦)))
2119, 20syl 14 . . . . . . . . . 10 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦) ↔ 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), 𝑦)))
22 isoeq5 5848 . . . . . . . . . 10 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), 𝑦) ↔ 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))
2321, 22bitrd 188 . . . . . . . . 9 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦) ↔ 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))
2423exbidv 1836 . . . . . . . 8 (𝑦 = (𝑋 ∖ {𝑀}) → (∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦) ↔ ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))
2517, 24imbi12d 234 . . . . . . 7 (𝑦 = (𝑋 ∖ {𝑀}) → ((((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)) ↔ ((((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))))
2625spcgv 2847 . . . . . 6 ((𝑋 ∖ {𝑀}) ∈ Fin → (∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)) → ((((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))))
276, 26syl 14 . . . . 5 (𝜑 → (∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)) → ((((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))))
2812, 27mpd 13 . . . 4 (𝜑 → ((((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))
2911, 28mpd 13 . . 3 (𝜑 → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))
30 isoeq1 5844 . . . 4 (𝑓 = 𝑔 → (𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})) ↔ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))
3130cbvexv 1930 . . 3 (∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})) ↔ ∃𝑔 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))
3229, 31sylib 122 . 2 (𝜑 → ∃𝑔 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))
33 df-isom 5263 . . . . . . . . 9 (𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})) ↔ (𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}) ∧ ∀𝑢 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))∀𝑣 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))(𝑢 < 𝑣 ↔ (𝑔𝑢) < (𝑔𝑣))))
3433biimpi 120 . . . . . . . 8 (𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})) → (𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}) ∧ ∀𝑢 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))∀𝑣 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))(𝑢 < 𝑣 ↔ (𝑔𝑢) < (𝑔𝑣))))
3534adantl 277 . . . . . . 7 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}) ∧ ∀𝑢 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))∀𝑣 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))(𝑢 < 𝑣 ↔ (𝑔𝑢) < (𝑔𝑣))))
3635simpld 112 . . . . . 6 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → 𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}))
37 hashcl 10852 . . . . . . . . 9 (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0)
383, 37syl 14 . . . . . . . 8 (𝜑 → (♯‘𝑋) ∈ ℕ0)
3938adantr 276 . . . . . . 7 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (♯‘𝑋) ∈ ℕ0)
404adantr 276 . . . . . . 7 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → 𝑀𝑋)
41 f1osng 5541 . . . . . . 7 (((♯‘𝑋) ∈ ℕ0𝑀𝑋) → {⟨(♯‘𝑋), 𝑀⟩}:{(♯‘𝑋)}–1-1-onto→{𝑀})
4239, 40, 41syl2anc 411 . . . . . 6 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → {⟨(♯‘𝑋), 𝑀⟩}:{(♯‘𝑋)}–1-1-onto→{𝑀})
43 hashdifsn 10890 . . . . . . . . . . . . 13 ((𝑋 ∈ Fin ∧ 𝑀𝑋) → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1))
443, 4, 43syl2anc 411 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1))
4544oveq1d 5933 . . . . . . . . . . 11 (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (((♯‘𝑋) − 1) + 1))
4638nn0cnd 9295 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑋) ∈ ℂ)
47 1cnd 8035 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
4846, 47npcand 8334 . . . . . . . . . . 11 (𝜑 → (((♯‘𝑋) − 1) + 1) = (♯‘𝑋))
4945, 48eqtrd 2226 . . . . . . . . . 10 (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (♯‘𝑋))
5049sneqd 3631 . . . . . . . . 9 (𝜑 → {((♯‘(𝑋 ∖ {𝑀})) + 1)} = {(♯‘𝑋)})
5150ineq2d 3360 . . . . . . . 8 (𝜑 → ((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {((♯‘(𝑋 ∖ {𝑀})) + 1)}) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {(♯‘𝑋)}))
52 fzp1disj 10146 . . . . . . . 8 ((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {((♯‘(𝑋 ∖ {𝑀})) + 1)}) = ∅
5351, 52eqtr3di 2241 . . . . . . 7 (𝜑 → ((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {(♯‘𝑋)}) = ∅)
5453adantr 276 . . . . . 6 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {(♯‘𝑋)}) = ∅)
55 incom 3351 . . . . . . . 8 ((𝑋 ∖ {𝑀}) ∩ {𝑀}) = ({𝑀} ∩ (𝑋 ∖ {𝑀}))
56 disjdif 3519 . . . . . . . 8 ({𝑀} ∩ (𝑋 ∖ {𝑀})) = ∅
5755, 56eqtri 2214 . . . . . . 7 ((𝑋 ∖ {𝑀}) ∩ {𝑀}) = ∅
5857a1i 9 . . . . . 6 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ((𝑋 ∖ {𝑀}) ∩ {𝑀}) = ∅)
59 f1oun 5520 . . . . . 6 (((𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}) ∧ {⟨(♯‘𝑋), 𝑀⟩}:{(♯‘𝑋)}–1-1-onto→{𝑀}) ∧ (((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {(♯‘𝑋)}) = ∅ ∧ ((𝑋 ∖ {𝑀}) ∩ {𝑀}) = ∅)) → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀}))
6036, 42, 54, 58, 59syl22anc 1250 . . . . 5 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀}))
613, 4zfz1isolemsplit 10909 . . . . . . 7 (𝜑 → (1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)}))
62 fidifsnid 6927 . . . . . . . . 9 ((𝑋 ∈ Fin ∧ 𝑀𝑋) → ((𝑋 ∖ {𝑀}) ∪ {𝑀}) = 𝑋)
633, 4, 62syl2anc 411 . . . . . . . 8 (𝜑 → ((𝑋 ∖ {𝑀}) ∪ {𝑀}) = 𝑋)
6463eqcomd 2199 . . . . . . 7 (𝜑𝑋 = ((𝑋 ∖ {𝑀}) ∪ {𝑀}))
65 f1oeq23 5491 . . . . . . 7 (((1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)}) ∧ 𝑋 = ((𝑋 ∖ {𝑀}) ∪ {𝑀})) → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):(1...(♯‘𝑋))–1-1-onto𝑋 ↔ (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀})))
6661, 64, 65syl2anc 411 . . . . . 6 (𝜑 → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):(1...(♯‘𝑋))–1-1-onto𝑋 ↔ (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀})))
6766adantr 276 . . . . 5 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):(1...(♯‘𝑋))–1-1-onto𝑋 ↔ (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀})))
6860, 67mpbird 167 . . . 4 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):(1...(♯‘𝑋))–1-1-onto𝑋)
693ad2antrr 488 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑋 ∈ Fin)
701ad2antrr 488 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑋 ⊆ ℤ)
714ad2antrr 488 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑀𝑋)
72 zfz1isolem1.m . . . . . . 7 (𝜑 → ∀𝑧𝑋 𝑧𝑀)
7372ad2antrr 488 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → ∀𝑧𝑋 𝑧𝑀)
74 simplr 528 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))
75 simprl 529 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑎 ∈ (1...(♯‘𝑋)))
76 simprr 531 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑏 ∈ (1...(♯‘𝑋)))
7769, 70, 71, 73, 74, 75, 76zfz1isolemiso 10910 . . . . 5 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → (𝑎 < 𝑏 ↔ ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑎) < ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑏)))
7877ralrimivva 2576 . . . 4 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ∀𝑎 ∈ (1...(♯‘𝑋))∀𝑏 ∈ (1...(♯‘𝑋))(𝑎 < 𝑏 ↔ ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑎) < ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑏)))
79 df-isom 5263 . . . 4 ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋) ↔ ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):(1...(♯‘𝑋))–1-1-onto𝑋 ∧ ∀𝑎 ∈ (1...(♯‘𝑋))∀𝑏 ∈ (1...(♯‘𝑋))(𝑎 < 𝑏 ↔ ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑎) < ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑏))))
8068, 78, 79sylanbrc 417 . . 3 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋))
81 vex 2763 . . . . . . 7 𝑔 ∈ V
8281a1i 9 . . . . . 6 (𝜑𝑔 ∈ V)
83 opexg 4257 . . . . . . . 8 (((♯‘𝑋) ∈ ℕ0𝑀𝑋) → ⟨(♯‘𝑋), 𝑀⟩ ∈ V)
8438, 4, 83syl2anc 411 . . . . . . 7 (𝜑 → ⟨(♯‘𝑋), 𝑀⟩ ∈ V)
85 snexg 4213 . . . . . . 7 (⟨(♯‘𝑋), 𝑀⟩ ∈ V → {⟨(♯‘𝑋), 𝑀⟩} ∈ V)
8684, 85syl 14 . . . . . 6 (𝜑 → {⟨(♯‘𝑋), 𝑀⟩} ∈ V)
87 unexg 4474 . . . . . 6 ((𝑔 ∈ V ∧ {⟨(♯‘𝑋), 𝑀⟩} ∈ V) → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) ∈ V)
8882, 86, 87syl2anc 411 . . . . 5 (𝜑 → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) ∈ V)
89 isoeq1 5844 . . . . . 6 (𝑓 = (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) → (𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋) ↔ (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋)))
9089spcegv 2848 . . . . 5 ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) ∈ V → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋)))
9188, 90syl 14 . . . 4 (𝜑 → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋)))
9291adantr 276 . . 3 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋)))
9380, 92mpd 13 . 2 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋))
9432, 93exlimddv 1910 1 (𝜑 → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362   = wceq 1364  wex 1503  wcel 2164  wral 2472  Vcvv 2760  cdif 3150  cun 3151  cin 3152  wss 3153  c0 3446  {csn 3618  cop 3621   class class class wbr 4029  suc csuc 4396  ωcom 4622  1-1-ontowf1o 5253  cfv 5254   Isom wiso 5255  (class class class)co 5918  cen 6792  Fincfn 6794  1c1 7873   + caddc 7875   < clt 8054  cle 8055  cmin 8190  0cn0 9240  cz 9317  ...cfz 10074  chash 10846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-ihash 10847
This theorem is referenced by:  zfz1iso  10912
  Copyright terms: Public domain W3C validator