ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfz1isolem1 GIF version

Theorem zfz1isolem1 10987
Description: Lemma for zfz1iso 10988. Existence of an order isomorphism given the existence of shorter isomorphisms. (Contributed by Jim Kingdon, 7-Sep-2022.)
Hypotheses
Ref Expression
zfz1isolem1.k (𝜑𝐾 ∈ ω)
zfz1isolem1.h (𝜑 → ∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)))
zfz1isolem1.xz (𝜑𝑋 ⊆ ℤ)
zfz1isolem1.xf (𝜑𝑋 ∈ Fin)
zfz1isolem1.xs (𝜑𝑋 ≈ suc 𝐾)
zfz1isolem1.mx (𝜑𝑀𝑋)
zfz1isolem1.m (𝜑 → ∀𝑧𝑋 𝑧𝑀)
Assertion
Ref Expression
zfz1isolem1 (𝜑 → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋))
Distinct variable groups:   𝑦,𝐾   𝑧,𝑀   𝑓,𝑀,𝑦   𝑧,𝑋   𝑓,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑓)   𝐾(𝑧,𝑓)

Proof of Theorem zfz1isolem1
Dummy variables 𝑎 𝑏 𝑔 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zfz1isolem1.xz . . . . . 6 (𝜑𝑋 ⊆ ℤ)
21ssdifssd 3311 . . . . 5 (𝜑 → (𝑋 ∖ {𝑀}) ⊆ ℤ)
3 zfz1isolem1.xf . . . . . 6 (𝜑𝑋 ∈ Fin)
4 zfz1isolem1.mx . . . . . 6 (𝜑𝑀𝑋)
5 diffisn 6992 . . . . . 6 ((𝑋 ∈ Fin ∧ 𝑀𝑋) → (𝑋 ∖ {𝑀}) ∈ Fin)
63, 4, 5syl2anc 411 . . . . 5 (𝜑 → (𝑋 ∖ {𝑀}) ∈ Fin)
7 zfz1isolem1.k . . . . . 6 (𝜑𝐾 ∈ ω)
8 zfz1isolem1.xs . . . . . 6 (𝜑𝑋 ≈ suc 𝐾)
9 dif1en 6978 . . . . . 6 ((𝐾 ∈ ω ∧ 𝑋 ≈ suc 𝐾𝑀𝑋) → (𝑋 ∖ {𝑀}) ≈ 𝐾)
107, 8, 4, 9syl3anc 1250 . . . . 5 (𝜑 → (𝑋 ∖ {𝑀}) ≈ 𝐾)
112, 6, 10jca31 309 . . . 4 (𝜑 → (((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾))
12 zfz1isolem1.h . . . . 5 (𝜑 → ∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)))
13 sseq1 3216 . . . . . . . . . 10 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑦 ⊆ ℤ ↔ (𝑋 ∖ {𝑀}) ⊆ ℤ))
14 eleq1 2268 . . . . . . . . . 10 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑦 ∈ Fin ↔ (𝑋 ∖ {𝑀}) ∈ Fin))
1513, 14anbi12d 473 . . . . . . . . 9 (𝑦 = (𝑋 ∖ {𝑀}) → ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ↔ ((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin)))
16 breq1 4048 . . . . . . . . 9 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑦𝐾 ↔ (𝑋 ∖ {𝑀}) ≈ 𝐾))
1715, 16anbi12d 473 . . . . . . . 8 (𝑦 = (𝑋 ∖ {𝑀}) → (((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) ↔ (((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾)))
18 fveq2 5578 . . . . . . . . . . . 12 (𝑦 = (𝑋 ∖ {𝑀}) → (♯‘𝑦) = (♯‘(𝑋 ∖ {𝑀})))
1918oveq2d 5962 . . . . . . . . . . 11 (𝑦 = (𝑋 ∖ {𝑀}) → (1...(♯‘𝑦)) = (1...(♯‘(𝑋 ∖ {𝑀}))))
20 isoeq4 5875 . . . . . . . . . . 11 ((1...(♯‘𝑦)) = (1...(♯‘(𝑋 ∖ {𝑀}))) → (𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦) ↔ 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), 𝑦)))
2119, 20syl 14 . . . . . . . . . 10 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦) ↔ 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), 𝑦)))
22 isoeq5 5876 . . . . . . . . . 10 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), 𝑦) ↔ 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))
2321, 22bitrd 188 . . . . . . . . 9 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦) ↔ 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))
2423exbidv 1848 . . . . . . . 8 (𝑦 = (𝑋 ∖ {𝑀}) → (∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦) ↔ ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))
2517, 24imbi12d 234 . . . . . . 7 (𝑦 = (𝑋 ∖ {𝑀}) → ((((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)) ↔ ((((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))))
2625spcgv 2860 . . . . . 6 ((𝑋 ∖ {𝑀}) ∈ Fin → (∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)) → ((((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))))
276, 26syl 14 . . . . 5 (𝜑 → (∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)) → ((((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))))
2812, 27mpd 13 . . . 4 (𝜑 → ((((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))
2911, 28mpd 13 . . 3 (𝜑 → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))
30 isoeq1 5872 . . . 4 (𝑓 = 𝑔 → (𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})) ↔ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))
3130cbvexv 1942 . . 3 (∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})) ↔ ∃𝑔 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))
3229, 31sylib 122 . 2 (𝜑 → ∃𝑔 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))
33 df-isom 5281 . . . . . . . . 9 (𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})) ↔ (𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}) ∧ ∀𝑢 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))∀𝑣 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))(𝑢 < 𝑣 ↔ (𝑔𝑢) < (𝑔𝑣))))
3433biimpi 120 . . . . . . . 8 (𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})) → (𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}) ∧ ∀𝑢 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))∀𝑣 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))(𝑢 < 𝑣 ↔ (𝑔𝑢) < (𝑔𝑣))))
3534adantl 277 . . . . . . 7 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}) ∧ ∀𝑢 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))∀𝑣 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))(𝑢 < 𝑣 ↔ (𝑔𝑢) < (𝑔𝑣))))
3635simpld 112 . . . . . 6 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → 𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}))
37 hashcl 10928 . . . . . . . . 9 (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0)
383, 37syl 14 . . . . . . . 8 (𝜑 → (♯‘𝑋) ∈ ℕ0)
3938adantr 276 . . . . . . 7 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (♯‘𝑋) ∈ ℕ0)
404adantr 276 . . . . . . 7 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → 𝑀𝑋)
41 f1osng 5565 . . . . . . 7 (((♯‘𝑋) ∈ ℕ0𝑀𝑋) → {⟨(♯‘𝑋), 𝑀⟩}:{(♯‘𝑋)}–1-1-onto→{𝑀})
4239, 40, 41syl2anc 411 . . . . . 6 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → {⟨(♯‘𝑋), 𝑀⟩}:{(♯‘𝑋)}–1-1-onto→{𝑀})
43 hashdifsn 10966 . . . . . . . . . . . . 13 ((𝑋 ∈ Fin ∧ 𝑀𝑋) → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1))
443, 4, 43syl2anc 411 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1))
4544oveq1d 5961 . . . . . . . . . . 11 (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (((♯‘𝑋) − 1) + 1))
4638nn0cnd 9352 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑋) ∈ ℂ)
47 1cnd 8090 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
4846, 47npcand 8389 . . . . . . . . . . 11 (𝜑 → (((♯‘𝑋) − 1) + 1) = (♯‘𝑋))
4945, 48eqtrd 2238 . . . . . . . . . 10 (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (♯‘𝑋))
5049sneqd 3646 . . . . . . . . 9 (𝜑 → {((♯‘(𝑋 ∖ {𝑀})) + 1)} = {(♯‘𝑋)})
5150ineq2d 3374 . . . . . . . 8 (𝜑 → ((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {((♯‘(𝑋 ∖ {𝑀})) + 1)}) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {(♯‘𝑋)}))
52 fzp1disj 10204 . . . . . . . 8 ((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {((♯‘(𝑋 ∖ {𝑀})) + 1)}) = ∅
5351, 52eqtr3di 2253 . . . . . . 7 (𝜑 → ((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {(♯‘𝑋)}) = ∅)
5453adantr 276 . . . . . 6 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {(♯‘𝑋)}) = ∅)
55 incom 3365 . . . . . . . 8 ((𝑋 ∖ {𝑀}) ∩ {𝑀}) = ({𝑀} ∩ (𝑋 ∖ {𝑀}))
56 disjdif 3533 . . . . . . . 8 ({𝑀} ∩ (𝑋 ∖ {𝑀})) = ∅
5755, 56eqtri 2226 . . . . . . 7 ((𝑋 ∖ {𝑀}) ∩ {𝑀}) = ∅
5857a1i 9 . . . . . 6 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ((𝑋 ∖ {𝑀}) ∩ {𝑀}) = ∅)
59 f1oun 5544 . . . . . 6 (((𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}) ∧ {⟨(♯‘𝑋), 𝑀⟩}:{(♯‘𝑋)}–1-1-onto→{𝑀}) ∧ (((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {(♯‘𝑋)}) = ∅ ∧ ((𝑋 ∖ {𝑀}) ∩ {𝑀}) = ∅)) → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀}))
6036, 42, 54, 58, 59syl22anc 1251 . . . . 5 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀}))
613, 4zfz1isolemsplit 10985 . . . . . . 7 (𝜑 → (1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)}))
62 fidifsnid 6970 . . . . . . . . 9 ((𝑋 ∈ Fin ∧ 𝑀𝑋) → ((𝑋 ∖ {𝑀}) ∪ {𝑀}) = 𝑋)
633, 4, 62syl2anc 411 . . . . . . . 8 (𝜑 → ((𝑋 ∖ {𝑀}) ∪ {𝑀}) = 𝑋)
6463eqcomd 2211 . . . . . . 7 (𝜑𝑋 = ((𝑋 ∖ {𝑀}) ∪ {𝑀}))
65 f1oeq23 5515 . . . . . . 7 (((1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)}) ∧ 𝑋 = ((𝑋 ∖ {𝑀}) ∪ {𝑀})) → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):(1...(♯‘𝑋))–1-1-onto𝑋 ↔ (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀})))
6661, 64, 65syl2anc 411 . . . . . 6 (𝜑 → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):(1...(♯‘𝑋))–1-1-onto𝑋 ↔ (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀})))
6766adantr 276 . . . . 5 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):(1...(♯‘𝑋))–1-1-onto𝑋 ↔ (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀})))
6860, 67mpbird 167 . . . 4 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):(1...(♯‘𝑋))–1-1-onto𝑋)
693ad2antrr 488 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑋 ∈ Fin)
701ad2antrr 488 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑋 ⊆ ℤ)
714ad2antrr 488 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑀𝑋)
72 zfz1isolem1.m . . . . . . 7 (𝜑 → ∀𝑧𝑋 𝑧𝑀)
7372ad2antrr 488 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → ∀𝑧𝑋 𝑧𝑀)
74 simplr 528 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))
75 simprl 529 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑎 ∈ (1...(♯‘𝑋)))
76 simprr 531 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑏 ∈ (1...(♯‘𝑋)))
7769, 70, 71, 73, 74, 75, 76zfz1isolemiso 10986 . . . . 5 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → (𝑎 < 𝑏 ↔ ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑎) < ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑏)))
7877ralrimivva 2588 . . . 4 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ∀𝑎 ∈ (1...(♯‘𝑋))∀𝑏 ∈ (1...(♯‘𝑋))(𝑎 < 𝑏 ↔ ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑎) < ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑏)))
79 df-isom 5281 . . . 4 ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋) ↔ ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):(1...(♯‘𝑋))–1-1-onto𝑋 ∧ ∀𝑎 ∈ (1...(♯‘𝑋))∀𝑏 ∈ (1...(♯‘𝑋))(𝑎 < 𝑏 ↔ ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑎) < ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑏))))
8068, 78, 79sylanbrc 417 . . 3 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋))
81 vex 2775 . . . . . . 7 𝑔 ∈ V
8281a1i 9 . . . . . 6 (𝜑𝑔 ∈ V)
83 opexg 4273 . . . . . . . 8 (((♯‘𝑋) ∈ ℕ0𝑀𝑋) → ⟨(♯‘𝑋), 𝑀⟩ ∈ V)
8438, 4, 83syl2anc 411 . . . . . . 7 (𝜑 → ⟨(♯‘𝑋), 𝑀⟩ ∈ V)
85 snexg 4229 . . . . . . 7 (⟨(♯‘𝑋), 𝑀⟩ ∈ V → {⟨(♯‘𝑋), 𝑀⟩} ∈ V)
8684, 85syl 14 . . . . . 6 (𝜑 → {⟨(♯‘𝑋), 𝑀⟩} ∈ V)
87 unexg 4491 . . . . . 6 ((𝑔 ∈ V ∧ {⟨(♯‘𝑋), 𝑀⟩} ∈ V) → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) ∈ V)
8882, 86, 87syl2anc 411 . . . . 5 (𝜑 → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) ∈ V)
89 isoeq1 5872 . . . . . 6 (𝑓 = (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) → (𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋) ↔ (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋)))
9089spcegv 2861 . . . . 5 ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) ∈ V → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋)))
9188, 90syl 14 . . . 4 (𝜑 → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋)))
9291adantr 276 . . 3 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋)))
9380, 92mpd 13 . 2 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋))
9432, 93exlimddv 1922 1 (𝜑 → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371   = wceq 1373  wex 1515  wcel 2176  wral 2484  Vcvv 2772  cdif 3163  cun 3164  cin 3165  wss 3166  c0 3460  {csn 3633  cop 3636   class class class wbr 4045  suc csuc 4413  ωcom 4639  1-1-ontowf1o 5271  cfv 5272   Isom wiso 5273  (class class class)co 5946  cen 6827  Fincfn 6829  1c1 7928   + caddc 7930   < clt 8109  cle 8110  cmin 8245  0cn0 9297  cz 9374  ...cfz 10132  chash 10922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-frec 6479  df-1o 6504  df-oadd 6508  df-er 6622  df-en 6830  df-dom 6831  df-fin 6832  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651  df-fz 10133  df-ihash 10923
This theorem is referenced by:  zfz1iso  10988
  Copyright terms: Public domain W3C validator