ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfz1isolem1 GIF version

Theorem zfz1isolem1 11022
Description: Lemma for zfz1iso 11023. Existence of an order isomorphism given the existence of shorter isomorphisms. (Contributed by Jim Kingdon, 7-Sep-2022.)
Hypotheses
Ref Expression
zfz1isolem1.k (𝜑𝐾 ∈ ω)
zfz1isolem1.h (𝜑 → ∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)))
zfz1isolem1.xz (𝜑𝑋 ⊆ ℤ)
zfz1isolem1.xf (𝜑𝑋 ∈ Fin)
zfz1isolem1.xs (𝜑𝑋 ≈ suc 𝐾)
zfz1isolem1.mx (𝜑𝑀𝑋)
zfz1isolem1.m (𝜑 → ∀𝑧𝑋 𝑧𝑀)
Assertion
Ref Expression
zfz1isolem1 (𝜑 → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋))
Distinct variable groups:   𝑦,𝐾   𝑧,𝑀   𝑓,𝑀,𝑦   𝑧,𝑋   𝑓,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑓)   𝐾(𝑧,𝑓)

Proof of Theorem zfz1isolem1
Dummy variables 𝑎 𝑏 𝑔 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zfz1isolem1.xz . . . . . 6 (𝜑𝑋 ⊆ ℤ)
21ssdifssd 3319 . . . . 5 (𝜑 → (𝑋 ∖ {𝑀}) ⊆ ℤ)
3 zfz1isolem1.xf . . . . . 6 (𝜑𝑋 ∈ Fin)
4 zfz1isolem1.mx . . . . . 6 (𝜑𝑀𝑋)
5 diffisn 7016 . . . . . 6 ((𝑋 ∈ Fin ∧ 𝑀𝑋) → (𝑋 ∖ {𝑀}) ∈ Fin)
63, 4, 5syl2anc 411 . . . . 5 (𝜑 → (𝑋 ∖ {𝑀}) ∈ Fin)
7 zfz1isolem1.k . . . . . 6 (𝜑𝐾 ∈ ω)
8 zfz1isolem1.xs . . . . . 6 (𝜑𝑋 ≈ suc 𝐾)
9 dif1en 7002 . . . . . 6 ((𝐾 ∈ ω ∧ 𝑋 ≈ suc 𝐾𝑀𝑋) → (𝑋 ∖ {𝑀}) ≈ 𝐾)
107, 8, 4, 9syl3anc 1250 . . . . 5 (𝜑 → (𝑋 ∖ {𝑀}) ≈ 𝐾)
112, 6, 10jca31 309 . . . 4 (𝜑 → (((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾))
12 zfz1isolem1.h . . . . 5 (𝜑 → ∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)))
13 sseq1 3224 . . . . . . . . . 10 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑦 ⊆ ℤ ↔ (𝑋 ∖ {𝑀}) ⊆ ℤ))
14 eleq1 2270 . . . . . . . . . 10 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑦 ∈ Fin ↔ (𝑋 ∖ {𝑀}) ∈ Fin))
1513, 14anbi12d 473 . . . . . . . . 9 (𝑦 = (𝑋 ∖ {𝑀}) → ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ↔ ((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin)))
16 breq1 4062 . . . . . . . . 9 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑦𝐾 ↔ (𝑋 ∖ {𝑀}) ≈ 𝐾))
1715, 16anbi12d 473 . . . . . . . 8 (𝑦 = (𝑋 ∖ {𝑀}) → (((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) ↔ (((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾)))
18 fveq2 5599 . . . . . . . . . . . 12 (𝑦 = (𝑋 ∖ {𝑀}) → (♯‘𝑦) = (♯‘(𝑋 ∖ {𝑀})))
1918oveq2d 5983 . . . . . . . . . . 11 (𝑦 = (𝑋 ∖ {𝑀}) → (1...(♯‘𝑦)) = (1...(♯‘(𝑋 ∖ {𝑀}))))
20 isoeq4 5896 . . . . . . . . . . 11 ((1...(♯‘𝑦)) = (1...(♯‘(𝑋 ∖ {𝑀}))) → (𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦) ↔ 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), 𝑦)))
2119, 20syl 14 . . . . . . . . . 10 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦) ↔ 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), 𝑦)))
22 isoeq5 5897 . . . . . . . . . 10 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), 𝑦) ↔ 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))
2321, 22bitrd 188 . . . . . . . . 9 (𝑦 = (𝑋 ∖ {𝑀}) → (𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦) ↔ 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))
2423exbidv 1849 . . . . . . . 8 (𝑦 = (𝑋 ∖ {𝑀}) → (∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦) ↔ ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))
2517, 24imbi12d 234 . . . . . . 7 (𝑦 = (𝑋 ∖ {𝑀}) → ((((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)) ↔ ((((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))))
2625spcgv 2867 . . . . . 6 ((𝑋 ∖ {𝑀}) ∈ Fin → (∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)) → ((((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))))
276, 26syl 14 . . . . 5 (𝜑 → (∀𝑦(((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑦𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑦)), 𝑦)) → ((((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))))
2812, 27mpd 13 . . . 4 (𝜑 → ((((𝑋 ∖ {𝑀}) ⊆ ℤ ∧ (𝑋 ∖ {𝑀}) ∈ Fin) ∧ (𝑋 ∖ {𝑀}) ≈ 𝐾) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))
2911, 28mpd 13 . . 3 (𝜑 → ∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))
30 isoeq1 5893 . . . 4 (𝑓 = 𝑔 → (𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})) ↔ 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))))
3130cbvexv 1943 . . 3 (∃𝑓 𝑓 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})) ↔ ∃𝑔 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))
3229, 31sylib 122 . 2 (𝜑 → ∃𝑔 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))
33 df-isom 5299 . . . . . . . . 9 (𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})) ↔ (𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}) ∧ ∀𝑢 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))∀𝑣 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))(𝑢 < 𝑣 ↔ (𝑔𝑢) < (𝑔𝑣))))
3433biimpi 120 . . . . . . . 8 (𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})) → (𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}) ∧ ∀𝑢 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))∀𝑣 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))(𝑢 < 𝑣 ↔ (𝑔𝑢) < (𝑔𝑣))))
3534adantl 277 . . . . . . 7 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}) ∧ ∀𝑢 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))∀𝑣 ∈ (1...(♯‘(𝑋 ∖ {𝑀})))(𝑢 < 𝑣 ↔ (𝑔𝑢) < (𝑔𝑣))))
3635simpld 112 . . . . . 6 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → 𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}))
37 hashcl 10963 . . . . . . . . 9 (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0)
383, 37syl 14 . . . . . . . 8 (𝜑 → (♯‘𝑋) ∈ ℕ0)
3938adantr 276 . . . . . . 7 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (♯‘𝑋) ∈ ℕ0)
404adantr 276 . . . . . . 7 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → 𝑀𝑋)
41 f1osng 5586 . . . . . . 7 (((♯‘𝑋) ∈ ℕ0𝑀𝑋) → {⟨(♯‘𝑋), 𝑀⟩}:{(♯‘𝑋)}–1-1-onto→{𝑀})
4239, 40, 41syl2anc 411 . . . . . 6 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → {⟨(♯‘𝑋), 𝑀⟩}:{(♯‘𝑋)}–1-1-onto→{𝑀})
43 hashdifsn 11001 . . . . . . . . . . . . 13 ((𝑋 ∈ Fin ∧ 𝑀𝑋) → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1))
443, 4, 43syl2anc 411 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝑋 ∖ {𝑀})) = ((♯‘𝑋) − 1))
4544oveq1d 5982 . . . . . . . . . . 11 (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (((♯‘𝑋) − 1) + 1))
4638nn0cnd 9385 . . . . . . . . . . . 12 (𝜑 → (♯‘𝑋) ∈ ℂ)
47 1cnd 8123 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℂ)
4846, 47npcand 8422 . . . . . . . . . . 11 (𝜑 → (((♯‘𝑋) − 1) + 1) = (♯‘𝑋))
4945, 48eqtrd 2240 . . . . . . . . . 10 (𝜑 → ((♯‘(𝑋 ∖ {𝑀})) + 1) = (♯‘𝑋))
5049sneqd 3656 . . . . . . . . 9 (𝜑 → {((♯‘(𝑋 ∖ {𝑀})) + 1)} = {(♯‘𝑋)})
5150ineq2d 3382 . . . . . . . 8 (𝜑 → ((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {((♯‘(𝑋 ∖ {𝑀})) + 1)}) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {(♯‘𝑋)}))
52 fzp1disj 10237 . . . . . . . 8 ((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {((♯‘(𝑋 ∖ {𝑀})) + 1)}) = ∅
5351, 52eqtr3di 2255 . . . . . . 7 (𝜑 → ((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {(♯‘𝑋)}) = ∅)
5453adantr 276 . . . . . 6 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {(♯‘𝑋)}) = ∅)
55 incom 3373 . . . . . . . 8 ((𝑋 ∖ {𝑀}) ∩ {𝑀}) = ({𝑀} ∩ (𝑋 ∖ {𝑀}))
56 disjdif 3541 . . . . . . . 8 ({𝑀} ∩ (𝑋 ∖ {𝑀})) = ∅
5755, 56eqtri 2228 . . . . . . 7 ((𝑋 ∖ {𝑀}) ∩ {𝑀}) = ∅
5857a1i 9 . . . . . 6 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ((𝑋 ∖ {𝑀}) ∩ {𝑀}) = ∅)
59 f1oun 5564 . . . . . 6 (((𝑔:(1...(♯‘(𝑋 ∖ {𝑀})))–1-1-onto→(𝑋 ∖ {𝑀}) ∧ {⟨(♯‘𝑋), 𝑀⟩}:{(♯‘𝑋)}–1-1-onto→{𝑀}) ∧ (((1...(♯‘(𝑋 ∖ {𝑀}))) ∩ {(♯‘𝑋)}) = ∅ ∧ ((𝑋 ∖ {𝑀}) ∩ {𝑀}) = ∅)) → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀}))
6036, 42, 54, 58, 59syl22anc 1251 . . . . 5 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀}))
613, 4zfz1isolemsplit 11020 . . . . . . 7 (𝜑 → (1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)}))
62 fidifsnid 6994 . . . . . . . . 9 ((𝑋 ∈ Fin ∧ 𝑀𝑋) → ((𝑋 ∖ {𝑀}) ∪ {𝑀}) = 𝑋)
633, 4, 62syl2anc 411 . . . . . . . 8 (𝜑 → ((𝑋 ∖ {𝑀}) ∪ {𝑀}) = 𝑋)
6463eqcomd 2213 . . . . . . 7 (𝜑𝑋 = ((𝑋 ∖ {𝑀}) ∪ {𝑀}))
65 f1oeq23 5535 . . . . . . 7 (((1...(♯‘𝑋)) = ((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)}) ∧ 𝑋 = ((𝑋 ∖ {𝑀}) ∪ {𝑀})) → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):(1...(♯‘𝑋))–1-1-onto𝑋 ↔ (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀})))
6661, 64, 65syl2anc 411 . . . . . 6 (𝜑 → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):(1...(♯‘𝑋))–1-1-onto𝑋 ↔ (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀})))
6766adantr 276 . . . . 5 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):(1...(♯‘𝑋))–1-1-onto𝑋 ↔ (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):((1...(♯‘(𝑋 ∖ {𝑀}))) ∪ {(♯‘𝑋)})–1-1-onto→((𝑋 ∖ {𝑀}) ∪ {𝑀})))
6860, 67mpbird 167 . . . 4 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):(1...(♯‘𝑋))–1-1-onto𝑋)
693ad2antrr 488 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑋 ∈ Fin)
701ad2antrr 488 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑋 ⊆ ℤ)
714ad2antrr 488 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑀𝑋)
72 zfz1isolem1.m . . . . . . 7 (𝜑 → ∀𝑧𝑋 𝑧𝑀)
7372ad2antrr 488 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → ∀𝑧𝑋 𝑧𝑀)
74 simplr 528 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀})))
75 simprl 529 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑎 ∈ (1...(♯‘𝑋)))
76 simprr 531 . . . . . 6 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → 𝑏 ∈ (1...(♯‘𝑋)))
7769, 70, 71, 73, 74, 75, 76zfz1isolemiso 11021 . . . . 5 (((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) ∧ (𝑎 ∈ (1...(♯‘𝑋)) ∧ 𝑏 ∈ (1...(♯‘𝑋)))) → (𝑎 < 𝑏 ↔ ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑎) < ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑏)))
7877ralrimivva 2590 . . . 4 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ∀𝑎 ∈ (1...(♯‘𝑋))∀𝑏 ∈ (1...(♯‘𝑋))(𝑎 < 𝑏 ↔ ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑎) < ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑏)))
79 df-isom 5299 . . . 4 ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋) ↔ ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}):(1...(♯‘𝑋))–1-1-onto𝑋 ∧ ∀𝑎 ∈ (1...(♯‘𝑋))∀𝑏 ∈ (1...(♯‘𝑋))(𝑎 < 𝑏 ↔ ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑎) < ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩})‘𝑏))))
8068, 78, 79sylanbrc 417 . . 3 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋))
81 vex 2779 . . . . . . 7 𝑔 ∈ V
8281a1i 9 . . . . . 6 (𝜑𝑔 ∈ V)
83 opexg 4290 . . . . . . . 8 (((♯‘𝑋) ∈ ℕ0𝑀𝑋) → ⟨(♯‘𝑋), 𝑀⟩ ∈ V)
8438, 4, 83syl2anc 411 . . . . . . 7 (𝜑 → ⟨(♯‘𝑋), 𝑀⟩ ∈ V)
85 snexg 4244 . . . . . . 7 (⟨(♯‘𝑋), 𝑀⟩ ∈ V → {⟨(♯‘𝑋), 𝑀⟩} ∈ V)
8684, 85syl 14 . . . . . 6 (𝜑 → {⟨(♯‘𝑋), 𝑀⟩} ∈ V)
87 unexg 4508 . . . . . 6 ((𝑔 ∈ V ∧ {⟨(♯‘𝑋), 𝑀⟩} ∈ V) → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) ∈ V)
8882, 86, 87syl2anc 411 . . . . 5 (𝜑 → (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) ∈ V)
89 isoeq1 5893 . . . . . 6 (𝑓 = (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) → (𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋) ↔ (𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋)))
9089spcegv 2868 . . . . 5 ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) ∈ V → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋)))
9188, 90syl 14 . . . 4 (𝜑 → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋)))
9291adantr 276 . . 3 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ((𝑔 ∪ {⟨(♯‘𝑋), 𝑀⟩}) Isom < , < ((1...(♯‘𝑋)), 𝑋) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋)))
9380, 92mpd 13 . 2 ((𝜑𝑔 Isom < , < ((1...(♯‘(𝑋 ∖ {𝑀}))), (𝑋 ∖ {𝑀}))) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋))
9432, 93exlimddv 1923 1 (𝜑 → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑋)), 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371   = wceq 1373  wex 1516  wcel 2178  wral 2486  Vcvv 2776  cdif 3171  cun 3172  cin 3173  wss 3174  c0 3468  {csn 3643  cop 3646   class class class wbr 4059  suc csuc 4430  ωcom 4656  1-1-ontowf1o 5289  cfv 5290   Isom wiso 5291  (class class class)co 5967  cen 6848  Fincfn 6850  1c1 7961   + caddc 7963   < clt 8142  cle 8143  cmin 8278  0cn0 9330  cz 9407  ...cfz 10165  chash 10957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-ihash 10958
This theorem is referenced by:  zfz1iso  11023
  Copyright terms: Public domain W3C validator