| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ixpsnval | GIF version | ||
| Description: The value of an infinite Cartesian product with a singleton. (Contributed by AV, 3-Dec-2018.) |
| Ref | Expression |
|---|---|
| ixpsnval | ⊢ (𝑋 ∈ 𝑉 → X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfixp 6837 | . 2 ⊢ X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ ∀𝑥 ∈ {𝑋} (𝑓‘𝑥) ∈ 𝐵)} | |
| 2 | ralsnsg 3703 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (∀𝑥 ∈ {𝑋} (𝑓‘𝑥) ∈ 𝐵 ↔ [𝑋 / 𝑥](𝑓‘𝑥) ∈ 𝐵)) | |
| 3 | sbcel12g 3139 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥](𝑓‘𝑥) ∈ 𝐵 ↔ ⦋𝑋 / 𝑥⦌(𝑓‘𝑥) ∈ ⦋𝑋 / 𝑥⦌𝐵)) | |
| 4 | csbfvg 5663 | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑥⦌(𝑓‘𝑥) = (𝑓‘𝑋)) | |
| 5 | 4 | eleq1d 2298 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (⦋𝑋 / 𝑥⦌(𝑓‘𝑥) ∈ ⦋𝑋 / 𝑥⦌𝐵 ↔ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)) |
| 6 | 2, 3, 5 | 3bitrd 214 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (∀𝑥 ∈ {𝑋} (𝑓‘𝑥) ∈ 𝐵 ↔ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)) |
| 7 | 6 | anbi2d 464 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ((𝑓 Fn {𝑋} ∧ ∀𝑥 ∈ {𝑋} (𝑓‘𝑥) ∈ 𝐵) ↔ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵))) |
| 8 | 7 | abbidv 2347 | . 2 ⊢ (𝑋 ∈ 𝑉 → {𝑓 ∣ (𝑓 Fn {𝑋} ∧ ∀𝑥 ∈ {𝑋} (𝑓‘𝑥) ∈ 𝐵)} = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)}) |
| 9 | 1, 8 | eqtrid 2274 | 1 ⊢ (𝑋 ∈ 𝑉 → X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 {cab 2215 ∀wral 2508 [wsbc 3028 ⦋csb 3124 {csn 3666 Fn wfn 5309 ‘cfv 5314 Xcixp 6835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5274 df-fn 5317 df-fv 5322 df-ixp 6836 |
| This theorem is referenced by: ixpsnbasval 14415 |
| Copyright terms: Public domain | W3C validator |