Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ixp0x | GIF version |
Description: An infinite Cartesian product with an empty index set. (Contributed by NM, 21-Sep-2007.) |
Ref | Expression |
---|---|
ixp0x | ⊢ X𝑥 ∈ ∅ 𝐴 = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfixp 6678 | . 2 ⊢ X𝑥 ∈ ∅ 𝐴 = {𝑓 ∣ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)} | |
2 | velsn 3600 | . . . 4 ⊢ (𝑓 ∈ {∅} ↔ 𝑓 = ∅) | |
3 | fn0 5317 | . . . 4 ⊢ (𝑓 Fn ∅ ↔ 𝑓 = ∅) | |
4 | ral0 3516 | . . . . 5 ⊢ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴 | |
5 | 4 | biantru 300 | . . . 4 ⊢ (𝑓 Fn ∅ ↔ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)) |
6 | 2, 3, 5 | 3bitr2i 207 | . . 3 ⊢ (𝑓 ∈ {∅} ↔ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)) |
7 | 6 | abbi2i 2285 | . 2 ⊢ {∅} = {𝑓 ∣ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)} |
8 | 1, 7 | eqtr4i 2194 | 1 ⊢ X𝑥 ∈ ∅ 𝐴 = {∅} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∈ wcel 2141 {cab 2156 ∀wral 2448 ∅c0 3414 {csn 3583 Fn wfn 5193 ‘cfv 5198 Xcixp 6676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-fun 5200 df-fn 5201 df-ixp 6677 |
This theorem is referenced by: 0elixp 6707 |
Copyright terms: Public domain | W3C validator |