| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ixp0x | GIF version | ||
| Description: An infinite Cartesian product with an empty index set. (Contributed by NM, 21-Sep-2007.) |
| Ref | Expression |
|---|---|
| ixp0x | ⊢ X𝑥 ∈ ∅ 𝐴 = {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfixp 6800 | . 2 ⊢ X𝑥 ∈ ∅ 𝐴 = {𝑓 ∣ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)} | |
| 2 | velsn 3655 | . . . 4 ⊢ (𝑓 ∈ {∅} ↔ 𝑓 = ∅) | |
| 3 | fn0 5405 | . . . 4 ⊢ (𝑓 Fn ∅ ↔ 𝑓 = ∅) | |
| 4 | ral0 3566 | . . . . 5 ⊢ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴 | |
| 5 | 4 | biantru 302 | . . . 4 ⊢ (𝑓 Fn ∅ ↔ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)) |
| 6 | 2, 3, 5 | 3bitr2i 208 | . . 3 ⊢ (𝑓 ∈ {∅} ↔ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)) |
| 7 | 6 | abbi2i 2321 | . 2 ⊢ {∅} = {𝑓 ∣ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)} |
| 8 | 1, 7 | eqtr4i 2230 | 1 ⊢ X𝑥 ∈ ∅ 𝐴 = {∅} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 {cab 2192 ∀wral 2485 ∅c0 3464 {csn 3638 Fn wfn 5275 ‘cfv 5280 Xcixp 6798 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-fun 5282 df-fn 5283 df-ixp 6799 |
| This theorem is referenced by: 0elixp 6829 |
| Copyright terms: Public domain | W3C validator |