ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elixp2 GIF version

Theorem elixp2 6499
Description: Membership in an infinite Cartesian product. See df-ixp 6496 for discussion of the notation. (Contributed by NM, 28-Sep-2006.)
Assertion
Ref Expression
elixp2 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem elixp2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fneq1 5136 . . . . 5 (𝑓 = 𝐹 → (𝑓 Fn 𝐴𝐹 Fn 𝐴))
2 fveq1 5339 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
32eleq1d 2163 . . . . . 6 (𝑓 = 𝐹 → ((𝑓𝑥) ∈ 𝐵 ↔ (𝐹𝑥) ∈ 𝐵))
43ralbidv 2391 . . . . 5 (𝑓 = 𝐹 → (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
51, 4anbi12d 458 . . . 4 (𝑓 = 𝐹 → ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)))
6 dfixp 6497 . . . 4 X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
75, 6elab2g 2776 . . 3 (𝐹 ∈ V → (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)))
87pm5.32i 443 . 2 ((𝐹 ∈ V ∧ 𝐹X𝑥𝐴 𝐵) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)))
9 elex 2644 . . 3 (𝐹X𝑥𝐴 𝐵𝐹 ∈ V)
109pm4.71ri 385 . 2 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹X𝑥𝐴 𝐵))
11 3anass 931 . 2 ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)))
128, 10, 113bitr4i 211 1 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  w3a 927   = wceq 1296  wcel 1445  wral 2370  Vcvv 2633   Fn wfn 5044  cfv 5049  Xcixp 6495
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fn 5052  df-fv 5057  df-ixp 6496
This theorem is referenced by:  fvixp  6500  ixpfn  6501  elixp  6502  ixpf  6517  resixp  6530  mptelixpg  6531
  Copyright terms: Public domain W3C validator