| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abbi2i | GIF version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| abbiri.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Ref | Expression |
|---|---|
| abbi2i | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abeq2 2338 | . 2 ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) | |
| 2 | abbiri.1 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) | |
| 3 | 1, 2 | mpgbir 1499 | 1 ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 ∈ wcel 2200 {cab 2215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: abid2 2350 cbvralcsf 3187 cbvrexcsf 3188 cbvreucsf 3189 cbvrabcsf 3190 symdifxor 3470 dfnul2 3493 dfpr2 3685 dftp2 3715 0iin 4023 pwpwab 4052 epse 4432 fv3 5649 fo1st 6301 fo2nd 6302 xp2 6317 tfrlem3 6455 tfr1onlem3 6482 mapsn 6835 ixpconstg 6852 ixp0x 6871 nnzrab 9466 nn0zrab 9467 |
| Copyright terms: Public domain | W3C validator |