ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abbi2i GIF version

Theorem abbi2i 2319
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
abbiri.1 (𝑥𝐴𝜑)
Assertion
Ref Expression
abbi2i 𝐴 = {𝑥𝜑}
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem abbi2i
StepHypRef Expression
1 abeq2 2313 . 2 (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
2 abbiri.1 . 2 (𝑥𝐴𝜑)
31, 2mpgbir 1475 1 𝐴 = {𝑥𝜑}
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1372  wcel 2175  {cab 2190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200
This theorem is referenced by:  abid2  2325  cbvralcsf  3155  cbvrexcsf  3156  cbvreucsf  3157  cbvrabcsf  3158  symdifxor  3438  dfnul2  3461  dfpr2  3651  dftp2  3681  0iin  3985  pwpwab  4014  epse  4387  fv3  5593  fo1st  6233  fo2nd  6234  xp2  6249  tfrlem3  6387  tfr1onlem3  6414  mapsn  6767  ixpconstg  6784  ixp0x  6803  nnzrab  9378  nn0zrab  9379
  Copyright terms: Public domain W3C validator