Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abbi2i | GIF version |
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
abbiri.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Ref | Expression |
---|---|
abbi2i | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2 2279 | . 2 ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) | |
2 | abbiri.1 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) | |
3 | 1, 2 | mpgbir 1446 | 1 ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1348 ∈ wcel 2141 {cab 2156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: abid2 2291 cbvralcsf 3111 cbvrexcsf 3112 cbvreucsf 3113 cbvrabcsf 3114 symdifxor 3393 dfnul2 3416 dfpr2 3600 dftp2 3630 0iin 3929 pwpwab 3958 epse 4325 fv3 5517 fo1st 6134 fo2nd 6135 xp2 6150 tfrlem3 6288 tfr1onlem3 6315 mapsn 6666 ixpconstg 6683 ixp0x 6702 nnzrab 9229 nn0zrab 9230 |
Copyright terms: Public domain | W3C validator |