Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > abbi2i | GIF version |
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
abbiri.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Ref | Expression |
---|---|
abbi2i | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2 2275 | . 2 ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) | |
2 | abbiri.1 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) | |
3 | 1, 2 | mpgbir 1441 | 1 ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 ∈ wcel 2136 {cab 2151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: abid2 2287 cbvralcsf 3107 cbvrexcsf 3108 cbvreucsf 3109 cbvrabcsf 3110 symdifxor 3388 dfnul2 3411 dfpr2 3595 dftp2 3625 0iin 3924 pwpwab 3953 epse 4320 fv3 5509 fo1st 6125 fo2nd 6126 xp2 6141 tfrlem3 6279 tfr1onlem3 6306 mapsn 6656 ixpconstg 6673 ixp0x 6692 nnzrab 9215 nn0zrab 9216 |
Copyright terms: Public domain | W3C validator |