![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abbi2i | GIF version |
Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
abbiri.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Ref | Expression |
---|---|
abbi2i | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2 2302 | . 2 ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) | |
2 | abbiri.1 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) | |
3 | 1, 2 | mpgbir 1464 | 1 ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2164 {cab 2179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: abid2 2314 cbvralcsf 3143 cbvrexcsf 3144 cbvreucsf 3145 cbvrabcsf 3146 symdifxor 3425 dfnul2 3448 dfpr2 3637 dftp2 3667 0iin 3971 pwpwab 4000 epse 4373 fv3 5577 fo1st 6210 fo2nd 6211 xp2 6226 tfrlem3 6364 tfr1onlem3 6391 mapsn 6744 ixpconstg 6761 ixp0x 6780 nnzrab 9341 nn0zrab 9342 |
Copyright terms: Public domain | W3C validator |