| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abbi2i | GIF version | ||
| Description: Equality of a class variable and a class abstraction (inference form). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| abbiri.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| Ref | Expression |
|---|---|
| abbi2i | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abeq2 2315 | . 2 ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) | |
| 2 | abbiri.1 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) | |
| 3 | 1, 2 | mpgbir 1477 | 1 ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∈ wcel 2177 {cab 2192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 |
| This theorem is referenced by: abid2 2327 cbvralcsf 3160 cbvrexcsf 3161 cbvreucsf 3162 cbvrabcsf 3163 symdifxor 3443 dfnul2 3466 dfpr2 3657 dftp2 3687 0iin 3992 pwpwab 4021 epse 4397 fv3 5612 fo1st 6256 fo2nd 6257 xp2 6272 tfrlem3 6410 tfr1onlem3 6437 mapsn 6790 ixpconstg 6807 ixp0x 6826 nnzrab 9416 nn0zrab 9417 |
| Copyright terms: Public domain | W3C validator |