ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotanul GIF version

Theorem iotanul 5103
Description: Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotanul (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)

Proof of Theorem iotanul
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-eu 2002 . . 3 (∃!𝑥𝜑 ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
2 dfiota2 5089 . . . 4 (℩𝑥𝜑) = {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)}
3 alnex 1475 . . . . . . 7 (∀𝑧 ¬ ∀𝑥(𝜑𝑥 = 𝑧) ↔ ¬ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
4 ax-in2 604 . . . . . . . . . 10 (¬ ∀𝑥(𝜑𝑥 = 𝑧) → (∀𝑥(𝜑𝑥 = 𝑧) → ¬ 𝑧 = 𝑧))
54alimi 1431 . . . . . . . . 9 (∀𝑧 ¬ ∀𝑥(𝜑𝑥 = 𝑧) → ∀𝑧(∀𝑥(𝜑𝑥 = 𝑧) → ¬ 𝑧 = 𝑧))
6 ss2ab 3165 . . . . . . . . 9 ({𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} ⊆ {𝑧 ∣ ¬ 𝑧 = 𝑧} ↔ ∀𝑧(∀𝑥(𝜑𝑥 = 𝑧) → ¬ 𝑧 = 𝑧))
75, 6sylibr 133 . . . . . . . 8 (∀𝑧 ¬ ∀𝑥(𝜑𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} ⊆ {𝑧 ∣ ¬ 𝑧 = 𝑧})
8 dfnul2 3365 . . . . . . . 8 ∅ = {𝑧 ∣ ¬ 𝑧 = 𝑧}
97, 8sseqtrrdi 3146 . . . . . . 7 (∀𝑧 ¬ ∀𝑥(𝜑𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} ⊆ ∅)
103, 9sylbir 134 . . . . . 6 (¬ ∃𝑧𝑥(𝜑𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} ⊆ ∅)
1110unissd 3760 . . . . 5 (¬ ∃𝑧𝑥(𝜑𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} ⊆ ∅)
12 uni0 3763 . . . . 5 ∅ = ∅
1311, 12sseqtrdi 3145 . . . 4 (¬ ∃𝑧𝑥(𝜑𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} ⊆ ∅)
142, 13eqsstrid 3143 . . 3 (¬ ∃𝑧𝑥(𝜑𝑥 = 𝑧) → (℩𝑥𝜑) ⊆ ∅)
151, 14sylnbi 667 . 2 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) ⊆ ∅)
16 ss0 3403 . 2 ((℩𝑥𝜑) ⊆ ∅ → (℩𝑥𝜑) = ∅)
1715, 16syl 14 1 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wal 1329   = wceq 1331  wex 1468  ∃!weu 1999  {cab 2125  wss 3071  c0 3363   cuni 3736  cio 5086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-in 3077  df-ss 3084  df-nul 3364  df-sn 3533  df-uni 3737  df-iota 5088
This theorem is referenced by:  tz6.12-2  5412  0fv  5456  riotaund  5764
  Copyright terms: Public domain W3C validator