Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iotanul | GIF version |
Description: Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotanul | ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2022 | . . 3 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
2 | dfiota2 5161 | . . . 4 ⊢ (℩𝑥𝜑) = ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} | |
3 | alnex 1492 | . . . . . . 7 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
4 | ax-in2 610 | . . . . . . . . . 10 ⊢ (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ¬ 𝑧 = 𝑧)) | |
5 | 4 | alimi 1448 | . . . . . . . . 9 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∀𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ¬ 𝑧 = 𝑧)) |
6 | ss2ab 3215 | . . . . . . . . 9 ⊢ ({𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ {𝑧 ∣ ¬ 𝑧 = 𝑧} ↔ ∀𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ¬ 𝑧 = 𝑧)) | |
7 | 5, 6 | sylibr 133 | . . . . . . . 8 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ {𝑧 ∣ ¬ 𝑧 = 𝑧}) |
8 | dfnul2 3416 | . . . . . . . 8 ⊢ ∅ = {𝑧 ∣ ¬ 𝑧 = 𝑧} | |
9 | 7, 8 | sseqtrrdi 3196 | . . . . . . 7 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ ∅) |
10 | 3, 9 | sylbir 134 | . . . . . 6 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ ∅) |
11 | 10 | unissd 3820 | . . . . 5 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ ∪ ∅) |
12 | uni0 3823 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
13 | 11, 12 | sseqtrdi 3195 | . . . 4 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ ∅) |
14 | 2, 13 | eqsstrid 3193 | . . 3 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) ⊆ ∅) |
15 | 1, 14 | sylnbi 673 | . 2 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) ⊆ ∅) |
16 | ss0 3455 | . 2 ⊢ ((℩𝑥𝜑) ⊆ ∅ → (℩𝑥𝜑) = ∅) | |
17 | 15, 16 | syl 14 | 1 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 ∀wal 1346 = wceq 1348 ∃wex 1485 ∃!weu 2019 {cab 2156 ⊆ wss 3121 ∅c0 3414 ∪ cuni 3796 ℩cio 5158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 df-nul 3415 df-sn 3589 df-uni 3797 df-iota 5160 |
This theorem is referenced by: tz6.12-2 5487 0fv 5531 riotaund 5843 0g0 12630 |
Copyright terms: Public domain | W3C validator |