ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotanul GIF version

Theorem iotanul 5231
Description: Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
iotanul (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)

Proof of Theorem iotanul
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-eu 2045 . . 3 (∃!𝑥𝜑 ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
2 dfiota2 5217 . . . 4 (℩𝑥𝜑) = {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)}
3 alnex 1510 . . . . . . 7 (∀𝑧 ¬ ∀𝑥(𝜑𝑥 = 𝑧) ↔ ¬ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
4 ax-in2 616 . . . . . . . . . 10 (¬ ∀𝑥(𝜑𝑥 = 𝑧) → (∀𝑥(𝜑𝑥 = 𝑧) → ¬ 𝑧 = 𝑧))
54alimi 1466 . . . . . . . . 9 (∀𝑧 ¬ ∀𝑥(𝜑𝑥 = 𝑧) → ∀𝑧(∀𝑥(𝜑𝑥 = 𝑧) → ¬ 𝑧 = 𝑧))
6 ss2ab 3248 . . . . . . . . 9 ({𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} ⊆ {𝑧 ∣ ¬ 𝑧 = 𝑧} ↔ ∀𝑧(∀𝑥(𝜑𝑥 = 𝑧) → ¬ 𝑧 = 𝑧))
75, 6sylibr 134 . . . . . . . 8 (∀𝑧 ¬ ∀𝑥(𝜑𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} ⊆ {𝑧 ∣ ¬ 𝑧 = 𝑧})
8 dfnul2 3449 . . . . . . . 8 ∅ = {𝑧 ∣ ¬ 𝑧 = 𝑧}
97, 8sseqtrrdi 3229 . . . . . . 7 (∀𝑧 ¬ ∀𝑥(𝜑𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} ⊆ ∅)
103, 9sylbir 135 . . . . . 6 (¬ ∃𝑧𝑥(𝜑𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} ⊆ ∅)
1110unissd 3860 . . . . 5 (¬ ∃𝑧𝑥(𝜑𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} ⊆ ∅)
12 uni0 3863 . . . . 5 ∅ = ∅
1311, 12sseqtrdi 3228 . . . 4 (¬ ∃𝑧𝑥(𝜑𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑𝑥 = 𝑧)} ⊆ ∅)
142, 13eqsstrid 3226 . . 3 (¬ ∃𝑧𝑥(𝜑𝑥 = 𝑧) → (℩𝑥𝜑) ⊆ ∅)
151, 14sylnbi 679 . 2 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) ⊆ ∅)
16 ss0 3488 . 2 ((℩𝑥𝜑) ⊆ ∅ → (℩𝑥𝜑) = ∅)
1715, 16syl 14 1 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wal 1362   = wceq 1364  wex 1503  ∃!weu 2042  {cab 2179  wss 3154  c0 3447   cuni 3836  cio 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-in 3160  df-ss 3167  df-nul 3448  df-sn 3625  df-uni 3837  df-iota 5216
This theorem is referenced by:  tz6.12-2  5546  0fv  5591  riotaund  5909  0g0  12962
  Copyright terms: Public domain W3C validator