![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iotanul | GIF version |
Description: Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotanul | ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 1946 | . . 3 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
2 | dfiota2 4935 | . . . 4 ⊢ (℩𝑥𝜑) = ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} | |
3 | alnex 1429 | . . . . . . 7 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
4 | ax-in2 578 | . . . . . . . . . 10 ⊢ (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ¬ 𝑧 = 𝑧)) | |
5 | 4 | alimi 1385 | . . . . . . . . 9 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∀𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ¬ 𝑧 = 𝑧)) |
6 | ss2ab 3073 | . . . . . . . . 9 ⊢ ({𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ {𝑧 ∣ ¬ 𝑧 = 𝑧} ↔ ∀𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ¬ 𝑧 = 𝑧)) | |
7 | 5, 6 | sylibr 132 | . . . . . . . 8 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ {𝑧 ∣ ¬ 𝑧 = 𝑧}) |
8 | dfnul2 3271 | . . . . . . . 8 ⊢ ∅ = {𝑧 ∣ ¬ 𝑧 = 𝑧} | |
9 | 7, 8 | syl6sseqr 3057 | . . . . . . 7 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ ∅) |
10 | 3, 9 | sylbir 133 | . . . . . 6 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ ∅) |
11 | 10 | unissd 3651 | . . . . 5 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ ∪ ∅) |
12 | uni0 3654 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
13 | 11, 12 | syl6sseq 3056 | . . . 4 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ ∅) |
14 | 2, 13 | syl5eqss 3054 | . . 3 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) ⊆ ∅) |
15 | 1, 14 | sylnbi 636 | . 2 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) ⊆ ∅) |
16 | ss0 3305 | . 2 ⊢ ((℩𝑥𝜑) ⊆ ∅ → (℩𝑥𝜑) = ∅) | |
17 | 15, 16 | syl 14 | 1 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 103 ∀wal 1283 = wceq 1285 ∃wex 1422 ∃!weu 1943 {cab 2069 ⊆ wss 2984 ∅c0 3269 ∪ cuni 3627 ℩cio 4932 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2614 df-dif 2986 df-in 2990 df-ss 2997 df-nul 3270 df-sn 3428 df-uni 3628 df-iota 4934 |
This theorem is referenced by: tz6.12-2 5244 0fv 5284 riotaund 5581 |
Copyright terms: Public domain | W3C validator |