| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iotanul | GIF version | ||
| Description: Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| iotanul | ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2060 | . . 3 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
| 2 | dfiota2 5255 | . . . 4 ⊢ (℩𝑥𝜑) = ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} | |
| 3 | alnex 1525 | . . . . . . 7 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
| 4 | ax-in2 618 | . . . . . . . . . 10 ⊢ (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ¬ 𝑧 = 𝑧)) | |
| 5 | 4 | alimi 1481 | . . . . . . . . 9 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∀𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ¬ 𝑧 = 𝑧)) |
| 6 | ss2ab 3272 | . . . . . . . . 9 ⊢ ({𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ {𝑧 ∣ ¬ 𝑧 = 𝑧} ↔ ∀𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ¬ 𝑧 = 𝑧)) | |
| 7 | 5, 6 | sylibr 134 | . . . . . . . 8 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ {𝑧 ∣ ¬ 𝑧 = 𝑧}) |
| 8 | dfnul2 3473 | . . . . . . . 8 ⊢ ∅ = {𝑧 ∣ ¬ 𝑧 = 𝑧} | |
| 9 | 7, 8 | sseqtrrdi 3253 | . . . . . . 7 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ ∅) |
| 10 | 3, 9 | sylbir 135 | . . . . . 6 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ ∅) |
| 11 | 10 | unissd 3891 | . . . . 5 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ ∪ ∅) |
| 12 | uni0 3894 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
| 13 | 11, 12 | sseqtrdi 3252 | . . . 4 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ ∅) |
| 14 | 2, 13 | eqsstrid 3250 | . . 3 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) ⊆ ∅) |
| 15 | 1, 14 | sylnbi 682 | . 2 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) ⊆ ∅) |
| 16 | ss0 3512 | . 2 ⊢ ((℩𝑥𝜑) ⊆ ∅ → (℩𝑥𝜑) = ∅) | |
| 17 | 15, 16 | syl 14 | 1 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∀wal 1373 = wceq 1375 ∃wex 1518 ∃!weu 2057 {cab 2195 ⊆ wss 3177 ∅c0 3471 ∪ cuni 3867 ℩cio 5252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-dif 3179 df-in 3183 df-ss 3190 df-nul 3472 df-sn 3652 df-uni 3868 df-iota 5254 |
| This theorem is referenced by: tz6.12-2 5594 0fv 5639 riotaund 5964 0g0 13375 |
| Copyright terms: Public domain | W3C validator |