| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > iotanul | GIF version | ||
| Description: Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.) | 
| Ref | Expression | 
|---|---|
| iotanul | ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-eu 2048 | . . 3 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
| 2 | dfiota2 5220 | . . . 4 ⊢ (℩𝑥𝜑) = ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} | |
| 3 | alnex 1513 | . . . . . . 7 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
| 4 | ax-in2 616 | . . . . . . . . . 10 ⊢ (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ¬ 𝑧 = 𝑧)) | |
| 5 | 4 | alimi 1469 | . . . . . . . . 9 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∀𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ¬ 𝑧 = 𝑧)) | 
| 6 | ss2ab 3251 | . . . . . . . . 9 ⊢ ({𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ {𝑧 ∣ ¬ 𝑧 = 𝑧} ↔ ∀𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ¬ 𝑧 = 𝑧)) | |
| 7 | 5, 6 | sylibr 134 | . . . . . . . 8 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ {𝑧 ∣ ¬ 𝑧 = 𝑧}) | 
| 8 | dfnul2 3452 | . . . . . . . 8 ⊢ ∅ = {𝑧 ∣ ¬ 𝑧 = 𝑧} | |
| 9 | 7, 8 | sseqtrrdi 3232 | . . . . . . 7 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ ∅) | 
| 10 | 3, 9 | sylbir 135 | . . . . . 6 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ ∅) | 
| 11 | 10 | unissd 3863 | . . . . 5 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ ∪ ∅) | 
| 12 | uni0 3866 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
| 13 | 11, 12 | sseqtrdi 3231 | . . . 4 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ ∅) | 
| 14 | 2, 13 | eqsstrid 3229 | . . 3 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) ⊆ ∅) | 
| 15 | 1, 14 | sylnbi 679 | . 2 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) ⊆ ∅) | 
| 16 | ss0 3491 | . 2 ⊢ ((℩𝑥𝜑) ⊆ ∅ → (℩𝑥𝜑) = ∅) | |
| 17 | 15, 16 | syl 14 | 1 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 ∃wex 1506 ∃!weu 2045 {cab 2182 ⊆ wss 3157 ∅c0 3450 ∪ cuni 3839 ℩cio 5217 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 df-sn 3628 df-uni 3840 df-iota 5219 | 
| This theorem is referenced by: tz6.12-2 5549 0fv 5594 riotaund 5912 0g0 13019 | 
| Copyright terms: Public domain | W3C validator |