![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iotanul | GIF version |
Description: Theorem 8.22 in [Quine] p. 57. This theorem is the result if there isn't exactly one 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotanul | ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2029 | . . 3 ⊢ (∃!𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
2 | dfiota2 5181 | . . . 4 ⊢ (℩𝑥𝜑) = ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} | |
3 | alnex 1499 | . . . . . . 7 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) ↔ ¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | |
4 | ax-in2 615 | . . . . . . . . . 10 ⊢ (¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ¬ 𝑧 = 𝑧)) | |
5 | 4 | alimi 1455 | . . . . . . . . 9 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∀𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ¬ 𝑧 = 𝑧)) |
6 | ss2ab 3225 | . . . . . . . . 9 ⊢ ({𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ {𝑧 ∣ ¬ 𝑧 = 𝑧} ↔ ∀𝑧(∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ¬ 𝑧 = 𝑧)) | |
7 | 5, 6 | sylibr 134 | . . . . . . . 8 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ {𝑧 ∣ ¬ 𝑧 = 𝑧}) |
8 | dfnul2 3426 | . . . . . . . 8 ⊢ ∅ = {𝑧 ∣ ¬ 𝑧 = 𝑧} | |
9 | 7, 8 | sseqtrrdi 3206 | . . . . . . 7 ⊢ (∀𝑧 ¬ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ ∅) |
10 | 3, 9 | sylbir 135 | . . . . . 6 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ ∅) |
11 | 10 | unissd 3835 | . . . . 5 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ ∪ ∅) |
12 | uni0 3838 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
13 | 11, 12 | sseqtrdi 3205 | . . . 4 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → ∪ {𝑧 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑧)} ⊆ ∅) |
14 | 2, 13 | eqsstrid 3203 | . . 3 ⊢ (¬ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧) → (℩𝑥𝜑) ⊆ ∅) |
15 | 1, 14 | sylnbi 678 | . 2 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) ⊆ ∅) |
16 | ss0 3465 | . 2 ⊢ ((℩𝑥𝜑) ⊆ ∅ → (℩𝑥𝜑) = ∅) | |
17 | 15, 16 | syl 14 | 1 ⊢ (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∀wal 1351 = wceq 1353 ∃wex 1492 ∃!weu 2026 {cab 2163 ⊆ wss 3131 ∅c0 3424 ∪ cuni 3811 ℩cio 5178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-in 3137 df-ss 3144 df-nul 3425 df-sn 3600 df-uni 3812 df-iota 5180 |
This theorem is referenced by: tz6.12-2 5508 0fv 5552 riotaund 5867 0g0 12800 |
Copyright terms: Public domain | W3C validator |