![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleq2s | GIF version |
Description: Substitution of equal classes into a membership antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
eleq2s.1 | ⊢ (𝐴 ∈ 𝐵 → 𝜑) |
eleq2s.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
eleq2s | ⊢ (𝐴 ∈ 𝐶 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2s.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
2 | 1 | eleq2i 2244 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐵) |
3 | eleq2s.1 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝜑) | |
4 | 2, 3 | sylbi 121 | 1 ⊢ (𝐴 ∈ 𝐶 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 df-clel 2173 |
This theorem is referenced by: elrabi 2892 opelopabsb 4262 epelg 4292 reg3exmidlemwe 4580 elxpi 4644 optocl 4704 fvmptss2 5594 fvmptssdm 5603 acexmidlemcase 5873 elmpocl 6072 mpoxopn0yelv 6243 tfr2a 6325 tfri1dALT 6355 2oconcl 6443 el2oss1o 6447 ecexr 6543 ectocld 6604 ecoptocl 6625 eroveu 6629 mapsnconst 6697 diffitest 6890 en2eqpr 6910 ctssdccl 7113 nninfwlpoimlemginf 7177 exmidonfinlem 7195 exmidfodomrlemr 7204 exmidfodomrlemrALT 7205 dmaddpqlem 7379 nqpi 7380 nq0nn 7444 0nsr 7751 suplocsrlempr 7809 cnm 7834 axaddcl 7866 axmulcl 7868 aprcl 8606 aptap 8610 peano2uzs 9587 fzssnn 10071 fzossnn0 10178 rebtwn2zlemstep 10256 fldiv4p1lem1div2 10308 frecfzennn 10429 fser0const 10519 facnn 10710 bcpasc 10749 hashfzo0 10806 rexuz3 11002 rexanuz2 11003 r19.2uz 11005 cau4 11128 caubnd2 11129 climshft2 11317 climaddc1 11340 climmulc2 11342 climsubc1 11343 climsubc2 11344 climlec2 11352 climcau 11358 climcaucn 11362 iserabs 11486 binomlem 11494 isumshft 11501 cvgratgt0 11544 clim2divap 11551 ntrivcvgap 11559 fprodntrivap 11595 fprodeq0 11628 infssuzex 11953 infssuzledc 11954 3prm 12131 phicl2 12217 phibndlem 12219 dfphi2 12223 crth 12227 phimullem 12228 znnen 12402 ennnfonelemkh 12416 fvprif 12768 xpsfeq 12770 ismgmn0 12783 lgsdir2lem2 14570 lgsdir2lem3 14571 bj-el2oss1o 14666 2o01f 14887 nninfalllem1 14898 nninfall 14899 |
Copyright terms: Public domain | W3C validator |