![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleq2s | GIF version |
Description: Substitution of equal classes into a membership antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
eleq2s.1 | ⊢ (𝐴 ∈ 𝐵 → 𝜑) |
eleq2s.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
eleq2s | ⊢ (𝐴 ∈ 𝐶 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2s.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
2 | 1 | eleq2i 2260 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐵) |
3 | eleq2s.1 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝜑) | |
4 | 2, 3 | sylbi 121 | 1 ⊢ (𝐴 ∈ 𝐶 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: elrabi 2913 opelopabsb 4290 epelg 4321 reg3exmidlemwe 4611 elxpi 4675 optocl 4735 elfvm 5587 fvmptss2 5632 fvmptssdm 5642 acexmidlemcase 5913 elmpocl 6113 mpoxopn0yelv 6292 tfr2a 6374 tfri1dALT 6404 2oconcl 6492 el2oss1o 6496 ecexr 6592 ectocld 6655 ecoptocl 6676 eroveu 6680 mapsnconst 6748 diffitest 6943 en2eqpr 6963 ctssdccl 7170 nninfwlpoimlemginf 7235 exmidonfinlem 7253 exmidfodomrlemr 7262 exmidfodomrlemrALT 7263 dmaddpqlem 7437 nqpi 7438 nq0nn 7502 0nsr 7809 suplocsrlempr 7867 cnm 7892 axaddcl 7924 axmulcl 7926 aprcl 8665 aptap 8669 peano2uzs 9649 fzssnn 10134 fzossnn0 10242 rebtwn2zlemstep 10321 fldiv4p1lem1div2 10374 frecfzennn 10497 fser0const 10606 facnn 10798 bcpasc 10837 hashfzo0 10894 rexuz3 11134 rexanuz2 11135 r19.2uz 11137 cau4 11260 caubnd2 11261 climshft2 11449 climaddc1 11472 climmulc2 11474 climsubc1 11475 climsubc2 11476 climlec2 11484 climcau 11490 climcaucn 11494 iserabs 11618 binomlem 11626 isumshft 11633 cvgratgt0 11676 clim2divap 11683 ntrivcvgap 11691 fprodntrivap 11727 fprodeq0 11760 infssuzex 12086 infssuzledc 12087 3prm 12266 phicl2 12352 phibndlem 12354 dfphi2 12358 crth 12362 phimullem 12363 znnen 12555 ennnfonelemkh 12569 fvprif 12926 xpsfeq 12928 ismgmn0 12941 zrhval 14105 lgsdir2lem2 15145 lgsdir2lem3 15146 bj-el2oss1o 15266 2o01f 15487 nninfalllem1 15498 nninfall 15499 |
Copyright terms: Public domain | W3C validator |