Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eleq2s | GIF version |
Description: Substitution of equal classes into a membership antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
eleq2s.1 | ⊢ (𝐴 ∈ 𝐵 → 𝜑) |
eleq2s.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
eleq2s | ⊢ (𝐴 ∈ 𝐶 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2s.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
2 | 1 | eleq2i 2233 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐵) |
3 | eleq2s.1 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝜑) | |
4 | 2, 3 | sylbi 120 | 1 ⊢ (𝐴 ∈ 𝐶 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: elrabi 2879 opelopabsb 4238 epelg 4268 reg3exmidlemwe 4556 elxpi 4620 optocl 4680 fvmptss2 5561 fvmptssdm 5570 acexmidlemcase 5837 elmpocl 6036 mpoxopn0yelv 6207 tfr2a 6289 tfri1dALT 6319 2oconcl 6407 el2oss1o 6411 ecexr 6506 ectocld 6567 ecoptocl 6588 eroveu 6592 mapsnconst 6660 diffitest 6853 en2eqpr 6873 ctssdccl 7076 exmidonfinlem 7149 exmidfodomrlemr 7158 exmidfodomrlemrALT 7159 dmaddpqlem 7318 nqpi 7319 nq0nn 7383 0nsr 7690 suplocsrlempr 7748 cnm 7773 axaddcl 7805 axmulcl 7807 aprcl 8544 peano2uzs 9522 fzssnn 10003 fzossnn0 10110 rebtwn2zlemstep 10188 fldiv4p1lem1div2 10240 frecfzennn 10361 fser0const 10451 facnn 10640 bcpasc 10679 hashfzo0 10736 rexuz3 10932 rexanuz2 10933 r19.2uz 10935 cau4 11058 caubnd2 11059 climshft2 11247 climaddc1 11270 climmulc2 11272 climsubc1 11273 climsubc2 11274 climlec2 11282 climcau 11288 climcaucn 11292 iserabs 11416 binomlem 11424 isumshft 11431 cvgratgt0 11474 clim2divap 11481 ntrivcvgap 11489 fprodntrivap 11525 fprodeq0 11558 infssuzex 11882 infssuzledc 11883 3prm 12060 phicl2 12146 phibndlem 12148 dfphi2 12152 crth 12156 phimullem 12157 znnen 12331 ennnfonelemkh 12345 ismgmn0 12589 lgsdir2lem2 13580 lgsdir2lem3 13581 bj-el2oss1o 13665 2o01f 13886 nninfalllem1 13898 nninfall 13899 |
Copyright terms: Public domain | W3C validator |