![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleq2s | GIF version |
Description: Substitution of equal classes into a membership antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
eleq2s.1 | ⊢ (𝐴 ∈ 𝐵 → 𝜑) |
eleq2s.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
eleq2s | ⊢ (𝐴 ∈ 𝐶 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2s.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
2 | 1 | eleq2i 2154 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐵) |
3 | eleq2s.1 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝜑) | |
4 | 2, 3 | sylbi 119 | 1 ⊢ (𝐴 ∈ 𝐶 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1289 ∈ wcel 1438 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-4 1445 ax-17 1464 ax-ial 1472 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-cleq 2081 df-clel 2084 |
This theorem is referenced by: elrabi 2768 opelopabsb 4087 epelg 4117 reg3exmidlemwe 4394 elxpi 4454 optocl 4514 fvmptss2 5379 fvmptssdm 5387 acexmidlemcase 5647 elmpt2cl 5842 mpt2xopn0yelv 6004 tfr2a 6086 tfri1dALT 6116 2oconcl 6203 ecexr 6295 ectocld 6356 ecoptocl 6377 eroveu 6381 mapsnconst 6449 diffitest 6601 en2eqpr 6621 exmidfodomrlemr 6826 exmidfodomrlemrALT 6827 dmaddpqlem 6934 nqpi 6935 nq0nn 6999 0nsr 7293 axaddcl 7399 axmulcl 7401 peano2uzs 9070 fzossnn0 9582 rebtwn2zlemstep 9660 fldiv4p1lem1div2 9708 frecfzennn 9829 ser0 9945 fser0const 9947 facnn 10131 bcpasc 10170 hashfzo0 10227 rexuz3 10419 rexanuz2 10420 r19.2uz 10422 cau4 10545 caubnd2 10546 climshft2 10691 climaddc1 10713 climmulc2 10715 climsubc1 10716 climsubc2 10717 climlec2 10726 climcau 10732 climcaucn 10736 iserabs 10865 binomlem 10873 isumshft 10880 cvgratgt0 10923 infssuzex 11219 infssuzledc 11220 3prm 11384 phicl2 11464 phibndlem 11466 dfphi2 11470 crth 11474 phimullem 11475 znnen 11485 el2oss1o 11842 nninfalllem1 11854 nninfall 11855 |
Copyright terms: Public domain | W3C validator |