![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleq2s | GIF version |
Description: Substitution of equal classes into a membership antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
eleq2s.1 | ⊢ (𝐴 ∈ 𝐵 → 𝜑) |
eleq2s.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
eleq2s | ⊢ (𝐴 ∈ 𝐶 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2s.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
2 | 1 | eleq2i 2244 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐵) |
3 | eleq2s.1 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝜑) | |
4 | 2, 3 | sylbi 121 | 1 ⊢ (𝐴 ∈ 𝐶 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 df-clel 2173 |
This theorem is referenced by: elrabi 2892 opelopabsb 4262 epelg 4292 reg3exmidlemwe 4580 elxpi 4644 optocl 4704 fvmptss2 5593 fvmptssdm 5602 acexmidlemcase 5872 elmpocl 6071 mpoxopn0yelv 6242 tfr2a 6324 tfri1dALT 6354 2oconcl 6442 el2oss1o 6446 ecexr 6542 ectocld 6603 ecoptocl 6624 eroveu 6628 mapsnconst 6696 diffitest 6889 en2eqpr 6909 ctssdccl 7112 nninfwlpoimlemginf 7176 exmidonfinlem 7194 exmidfodomrlemr 7203 exmidfodomrlemrALT 7204 dmaddpqlem 7378 nqpi 7379 nq0nn 7443 0nsr 7750 suplocsrlempr 7808 cnm 7833 axaddcl 7865 axmulcl 7867 aprcl 8605 aptap 8609 peano2uzs 9586 fzssnn 10070 fzossnn0 10177 rebtwn2zlemstep 10255 fldiv4p1lem1div2 10307 frecfzennn 10428 fser0const 10518 facnn 10709 bcpasc 10748 hashfzo0 10805 rexuz3 11001 rexanuz2 11002 r19.2uz 11004 cau4 11127 caubnd2 11128 climshft2 11316 climaddc1 11339 climmulc2 11341 climsubc1 11342 climsubc2 11343 climlec2 11351 climcau 11357 climcaucn 11361 iserabs 11485 binomlem 11493 isumshft 11500 cvgratgt0 11543 clim2divap 11550 ntrivcvgap 11558 fprodntrivap 11594 fprodeq0 11627 infssuzex 11952 infssuzledc 11953 3prm 12130 phicl2 12216 phibndlem 12218 dfphi2 12222 crth 12226 phimullem 12227 znnen 12401 ennnfonelemkh 12415 fvprif 12767 xpsfeq 12769 ismgmn0 12782 lgsdir2lem2 14469 lgsdir2lem3 14470 bj-el2oss1o 14565 2o01f 14785 nninfalllem1 14796 nninfall 14797 |
Copyright terms: Public domain | W3C validator |