![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleq2s | GIF version |
Description: Substitution of equal classes into a membership antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
eleq2s.1 | ⊢ (𝐴 ∈ 𝐵 → 𝜑) |
eleq2s.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
eleq2s | ⊢ (𝐴 ∈ 𝐶 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2s.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
2 | 1 | eleq2i 2244 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐵) |
3 | eleq2s.1 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝜑) | |
4 | 2, 3 | sylbi 121 | 1 ⊢ (𝐴 ∈ 𝐶 → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 df-clel 2173 |
This theorem is referenced by: elrabi 2890 opelopabsb 4260 epelg 4290 reg3exmidlemwe 4578 elxpi 4642 optocl 4702 fvmptss2 5591 fvmptssdm 5600 acexmidlemcase 5869 elmpocl 6068 mpoxopn0yelv 6239 tfr2a 6321 tfri1dALT 6351 2oconcl 6439 el2oss1o 6443 ecexr 6539 ectocld 6600 ecoptocl 6621 eroveu 6625 mapsnconst 6693 diffitest 6886 en2eqpr 6906 ctssdccl 7109 nninfwlpoimlemginf 7173 exmidonfinlem 7191 exmidfodomrlemr 7200 exmidfodomrlemrALT 7201 dmaddpqlem 7375 nqpi 7376 nq0nn 7440 0nsr 7747 suplocsrlempr 7805 cnm 7830 axaddcl 7862 axmulcl 7864 aprcl 8602 aptap 8606 peano2uzs 9583 fzssnn 10067 fzossnn0 10174 rebtwn2zlemstep 10252 fldiv4p1lem1div2 10304 frecfzennn 10425 fser0const 10515 facnn 10706 bcpasc 10745 hashfzo0 10802 rexuz3 10998 rexanuz2 10999 r19.2uz 11001 cau4 11124 caubnd2 11125 climshft2 11313 climaddc1 11336 climmulc2 11338 climsubc1 11339 climsubc2 11340 climlec2 11348 climcau 11354 climcaucn 11358 iserabs 11482 binomlem 11490 isumshft 11497 cvgratgt0 11540 clim2divap 11547 ntrivcvgap 11555 fprodntrivap 11591 fprodeq0 11624 infssuzex 11949 infssuzledc 11950 3prm 12127 phicl2 12213 phibndlem 12215 dfphi2 12219 crth 12223 phimullem 12224 znnen 12398 ennnfonelemkh 12412 fvprif 12761 xpsfeq 12763 ismgmn0 12776 lgsdir2lem2 14400 lgsdir2lem3 14401 bj-el2oss1o 14496 2o01f 14716 nninfalllem1 14727 nninfall 14728 |
Copyright terms: Public domain | W3C validator |