ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgen GIF version

Theorem eqgen 13750
Description: Each coset is equipotent to the subgroup itself (which is also the coset containing the identity). (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
eqger.x 𝑋 = (Base‘𝐺)
eqger.r = (𝐺 ~QG 𝑌)
Assertion
Ref Expression
eqgen ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (𝑋 / )) → 𝑌𝐴)

Proof of Theorem eqgen
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . 2 (𝑋 / ) = (𝑋 / )
2 breq2 4086 . 2 ([𝑥] = 𝐴 → (𝑌 ≈ [𝑥] 𝑌𝐴))
3 simpl 109 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → 𝑌 ∈ (SubGrp‘𝐺))
4 subgrcl 13702 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
5 eqger.x . . . . . . . 8 𝑋 = (Base‘𝐺)
65subgss 13697 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
74, 6jca 306 . . . . . 6 (𝑌 ∈ (SubGrp‘𝐺) → (𝐺 ∈ Grp ∧ 𝑌𝑋))
8 eqger.r . . . . . . . 8 = (𝐺 ~QG 𝑌)
9 eqid 2229 . . . . . . . 8 (+g𝐺) = (+g𝐺)
105, 8, 9eqglact 13748 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝑋𝑥𝑋) → [𝑥] = ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
11103expa 1227 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑌𝑋) ∧ 𝑥𝑋) → [𝑥] = ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
127, 11sylan 283 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → [𝑥] = ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
135, 8eqger 13747 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → Er 𝑋)
14 basfn 13077 . . . . . . . . . 10 Base Fn V
154elexd 2813 . . . . . . . . . 10 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ V)
16 funfvex 5640 . . . . . . . . . . 11 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1716funfni 5419 . . . . . . . . . 10 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
1814, 15, 17sylancr 414 . . . . . . . . 9 (𝑌 ∈ (SubGrp‘𝐺) → (Base‘𝐺) ∈ V)
195, 18eqeltrid 2316 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → 𝑋 ∈ V)
20 erex 6694 . . . . . . . 8 ( Er 𝑋 → (𝑋 ∈ V → ∈ V))
2113, 19, 20sylc 62 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → ∈ V)
22 ecexg 6674 . . . . . . 7 ( ∈ V → [𝑥] ∈ V)
2321, 22syl 14 . . . . . 6 (𝑌 ∈ (SubGrp‘𝐺) → [𝑥] ∈ V)
2423adantr 276 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → [𝑥] ∈ V)
2512, 24eqeltrrd 2307 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌) ∈ V)
26 eqid 2229 . . . . . . . . 9 (𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧))) = (𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)))
2726, 5, 9grplactf1o 13622 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)))‘𝑥):𝑋1-1-onto𝑋)
2826, 5grplactfval 13620 . . . . . . . . . 10 (𝑥𝑋 → ((𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)))‘𝑥) = (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)))
2928adantl 277 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)))‘𝑥) = (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)))
3029f1oeq1d 5563 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (((𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)))‘𝑥):𝑋1-1-onto𝑋 ↔ (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1-onto𝑋))
3127, 30mpbid 147 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1-onto𝑋)
324, 31sylan 283 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1-onto𝑋)
33 f1of1 5567 . . . . . 6 ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1-onto𝑋 → (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1𝑋)
3432, 33syl 14 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1𝑋)
356adantr 276 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → 𝑌𝑋)
36 f1ores 5583 . . . . 5 (((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1𝑋𝑌𝑋) → ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) ↾ 𝑌):𝑌1-1-onto→((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
3734, 35, 36syl2anc 411 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) ↾ 𝑌):𝑌1-1-onto→((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
38 f1oen2g 6896 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌) ∈ V ∧ ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) ↾ 𝑌):𝑌1-1-onto→((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌)) → 𝑌 ≈ ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
393, 25, 37, 38syl3anc 1271 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → 𝑌 ≈ ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
4039, 12breqtrrd 4110 . 2 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → 𝑌 ≈ [𝑥] )
411, 2, 40ectocld 6738 1 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (𝑋 / )) → 𝑌𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  wss 3197   class class class wbr 4082  cmpt 4144  cres 4718  cima 4719   Fn wfn 5309  1-1wf1 5311  1-1-ontowf1o 5313  cfv 5314  (class class class)co 5994   Er wer 6667  [cec 6668   / cqs 6669  cen 6875  Basecbs 13018  +gcplusg 13096  Grpcgrp 13519  SubGrpcsubg 13690   ~QG cqg 13692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-pre-ltirr 8099  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-er 6670  df-ec 6672  df-qs 6676  df-en 6878  df-pnf 8171  df-mnf 8172  df-ltxr 8174  df-inn 9099  df-2 9157  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-iress 13026  df-plusg 13109  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-grp 13522  df-minusg 13523  df-subg 13693  df-eqg 13695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator