ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgen GIF version

Theorem eqgen 13357
Description: Each coset is equipotent to the subgroup itself (which is also the coset containing the identity). (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
eqger.x 𝑋 = (Base‘𝐺)
eqger.r = (𝐺 ~QG 𝑌)
Assertion
Ref Expression
eqgen ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (𝑋 / )) → 𝑌𝐴)

Proof of Theorem eqgen
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . 2 (𝑋 / ) = (𝑋 / )
2 breq2 4037 . 2 ([𝑥] = 𝐴 → (𝑌 ≈ [𝑥] 𝑌𝐴))
3 simpl 109 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → 𝑌 ∈ (SubGrp‘𝐺))
4 subgrcl 13309 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
5 eqger.x . . . . . . . 8 𝑋 = (Base‘𝐺)
65subgss 13304 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
74, 6jca 306 . . . . . 6 (𝑌 ∈ (SubGrp‘𝐺) → (𝐺 ∈ Grp ∧ 𝑌𝑋))
8 eqger.r . . . . . . . 8 = (𝐺 ~QG 𝑌)
9 eqid 2196 . . . . . . . 8 (+g𝐺) = (+g𝐺)
105, 8, 9eqglact 13355 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝑋𝑥𝑋) → [𝑥] = ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
11103expa 1205 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑌𝑋) ∧ 𝑥𝑋) → [𝑥] = ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
127, 11sylan 283 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → [𝑥] = ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
135, 8eqger 13354 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → Er 𝑋)
14 basfn 12736 . . . . . . . . . 10 Base Fn V
154elexd 2776 . . . . . . . . . 10 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ V)
16 funfvex 5575 . . . . . . . . . . 11 ((Fun Base ∧ 𝐺 ∈ dom Base) → (Base‘𝐺) ∈ V)
1716funfni 5358 . . . . . . . . . 10 ((Base Fn V ∧ 𝐺 ∈ V) → (Base‘𝐺) ∈ V)
1814, 15, 17sylancr 414 . . . . . . . . 9 (𝑌 ∈ (SubGrp‘𝐺) → (Base‘𝐺) ∈ V)
195, 18eqeltrid 2283 . . . . . . . 8 (𝑌 ∈ (SubGrp‘𝐺) → 𝑋 ∈ V)
20 erex 6616 . . . . . . . 8 ( Er 𝑋 → (𝑋 ∈ V → ∈ V))
2113, 19, 20sylc 62 . . . . . . 7 (𝑌 ∈ (SubGrp‘𝐺) → ∈ V)
22 ecexg 6596 . . . . . . 7 ( ∈ V → [𝑥] ∈ V)
2321, 22syl 14 . . . . . 6 (𝑌 ∈ (SubGrp‘𝐺) → [𝑥] ∈ V)
2423adantr 276 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → [𝑥] ∈ V)
2512, 24eqeltrrd 2274 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌) ∈ V)
26 eqid 2196 . . . . . . . . 9 (𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧))) = (𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)))
2726, 5, 9grplactf1o 13235 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)))‘𝑥):𝑋1-1-onto𝑋)
2826, 5grplactfval 13233 . . . . . . . . . 10 (𝑥𝑋 → ((𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)))‘𝑥) = (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)))
2928adantl 277 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)))‘𝑥) = (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)))
3029f1oeq1d 5499 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (((𝑦𝑋 ↦ (𝑧𝑋 ↦ (𝑦(+g𝐺)𝑧)))‘𝑥):𝑋1-1-onto𝑋 ↔ (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1-onto𝑋))
3127, 30mpbid 147 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1-onto𝑋)
324, 31sylan 283 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1-onto𝑋)
33 f1of1 5503 . . . . . 6 ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1-onto𝑋 → (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1𝑋)
3432, 33syl 14 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1𝑋)
356adantr 276 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → 𝑌𝑋)
36 f1ores 5519 . . . . 5 (((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)):𝑋1-1𝑋𝑌𝑋) → ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) ↾ 𝑌):𝑌1-1-onto→((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
3734, 35, 36syl2anc 411 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) ↾ 𝑌):𝑌1-1-onto→((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
38 f1oen2g 6814 . . . 4 ((𝑌 ∈ (SubGrp‘𝐺) ∧ ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌) ∈ V ∧ ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) ↾ 𝑌):𝑌1-1-onto→((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌)) → 𝑌 ≈ ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
393, 25, 37, 38syl3anc 1249 . . 3 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → 𝑌 ≈ ((𝑧𝑋 ↦ (𝑥(+g𝐺)𝑧)) “ 𝑌))
4039, 12breqtrrd 4061 . 2 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → 𝑌 ≈ [𝑥] )
411, 2, 40ectocld 6660 1 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (𝑋 / )) → 𝑌𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763  wss 3157   class class class wbr 4033  cmpt 4094  cres 4665  cima 4666   Fn wfn 5253  1-1wf1 5255  1-1-ontowf1o 5257  cfv 5258  (class class class)co 5922   Er wer 6589  [cec 6590   / cqs 6591  cen 6797  Basecbs 12678  +gcplusg 12755  Grpcgrp 13132  SubGrpcsubg 13297   ~QG cqg 13299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-er 6592  df-ec 6594  df-qs 6598  df-en 6800  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-subg 13300  df-eqg 13302
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator