ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qsel GIF version

Theorem qsel 6666
Description: If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
qsel ((𝑅 Er 𝑋𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶𝐵) → 𝐵 = [𝐶]𝑅)

Proof of Theorem qsel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . 3 (𝐴 / 𝑅) = (𝐴 / 𝑅)
2 eleq2 2257 . . . 4 ([𝑥]𝑅 = 𝐵 → (𝐶 ∈ [𝑥]𝑅𝐶𝐵))
3 eqeq1 2200 . . . 4 ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 = [𝐶]𝑅𝐵 = [𝐶]𝑅))
42, 3imbi12d 234 . . 3 ([𝑥]𝑅 = 𝐵 → ((𝐶 ∈ [𝑥]𝑅 → [𝑥]𝑅 = [𝐶]𝑅) ↔ (𝐶𝐵𝐵 = [𝐶]𝑅)))
5 vex 2763 . . . . . 6 𝑥 ∈ V
6 elecg 6627 . . . . . 6 ((𝐶 ∈ [𝑥]𝑅𝑥 ∈ V) → (𝐶 ∈ [𝑥]𝑅𝑥𝑅𝐶))
75, 6mpan2 425 . . . . 5 (𝐶 ∈ [𝑥]𝑅 → (𝐶 ∈ [𝑥]𝑅𝑥𝑅𝐶))
87ibi 176 . . . 4 (𝐶 ∈ [𝑥]𝑅𝑥𝑅𝐶)
9 simpll 527 . . . . . 6 (((𝑅 Er 𝑋𝑥𝐴) ∧ 𝑥𝑅𝐶) → 𝑅 Er 𝑋)
10 simpr 110 . . . . . 6 (((𝑅 Er 𝑋𝑥𝐴) ∧ 𝑥𝑅𝐶) → 𝑥𝑅𝐶)
119, 10erthi 6635 . . . . 5 (((𝑅 Er 𝑋𝑥𝐴) ∧ 𝑥𝑅𝐶) → [𝑥]𝑅 = [𝐶]𝑅)
1211ex 115 . . . 4 ((𝑅 Er 𝑋𝑥𝐴) → (𝑥𝑅𝐶 → [𝑥]𝑅 = [𝐶]𝑅))
138, 12syl5 32 . . 3 ((𝑅 Er 𝑋𝑥𝐴) → (𝐶 ∈ [𝑥]𝑅 → [𝑥]𝑅 = [𝐶]𝑅))
141, 4, 13ectocld 6655 . 2 ((𝑅 Er 𝑋𝐵 ∈ (𝐴 / 𝑅)) → (𝐶𝐵𝐵 = [𝐶]𝑅))
15143impia 1202 1 ((𝑅 Er 𝑋𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶𝐵) → 𝐵 = [𝐶]𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  Vcvv 2760   class class class wbr 4029   Er wer 6584  [cec 6585   / cqs 6586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-er 6587  df-ec 6589  df-qs 6593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator