ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qsel GIF version

Theorem qsel 6512
Description: If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
qsel ((𝑅 Er 𝑋𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶𝐵) → 𝐵 = [𝐶]𝑅)

Proof of Theorem qsel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2140 . . 3 (𝐴 / 𝑅) = (𝐴 / 𝑅)
2 eleq2 2204 . . . 4 ([𝑥]𝑅 = 𝐵 → (𝐶 ∈ [𝑥]𝑅𝐶𝐵))
3 eqeq1 2147 . . . 4 ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 = [𝐶]𝑅𝐵 = [𝐶]𝑅))
42, 3imbi12d 233 . . 3 ([𝑥]𝑅 = 𝐵 → ((𝐶 ∈ [𝑥]𝑅 → [𝑥]𝑅 = [𝐶]𝑅) ↔ (𝐶𝐵𝐵 = [𝐶]𝑅)))
5 vex 2692 . . . . . 6 𝑥 ∈ V
6 elecg 6473 . . . . . 6 ((𝐶 ∈ [𝑥]𝑅𝑥 ∈ V) → (𝐶 ∈ [𝑥]𝑅𝑥𝑅𝐶))
75, 6mpan2 422 . . . . 5 (𝐶 ∈ [𝑥]𝑅 → (𝐶 ∈ [𝑥]𝑅𝑥𝑅𝐶))
87ibi 175 . . . 4 (𝐶 ∈ [𝑥]𝑅𝑥𝑅𝐶)
9 simpll 519 . . . . . 6 (((𝑅 Er 𝑋𝑥𝐴) ∧ 𝑥𝑅𝐶) → 𝑅 Er 𝑋)
10 simpr 109 . . . . . 6 (((𝑅 Er 𝑋𝑥𝐴) ∧ 𝑥𝑅𝐶) → 𝑥𝑅𝐶)
119, 10erthi 6481 . . . . 5 (((𝑅 Er 𝑋𝑥𝐴) ∧ 𝑥𝑅𝐶) → [𝑥]𝑅 = [𝐶]𝑅)
1211ex 114 . . . 4 ((𝑅 Er 𝑋𝑥𝐴) → (𝑥𝑅𝐶 → [𝑥]𝑅 = [𝐶]𝑅))
138, 12syl5 32 . . 3 ((𝑅 Er 𝑋𝑥𝐴) → (𝐶 ∈ [𝑥]𝑅 → [𝑥]𝑅 = [𝐶]𝑅))
141, 4, 13ectocld 6501 . 2 ((𝑅 Er 𝑋𝐵 ∈ (𝐴 / 𝑅)) → (𝐶𝐵𝐵 = [𝐶]𝑅))
15143impia 1179 1 ((𝑅 Er 𝑋𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶𝐵) → 𝐵 = [𝐶]𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481  Vcvv 2689   class class class wbr 3935   Er wer 6432  [cec 6433   / cqs 6434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4052  ax-pow 4104  ax-pr 4137
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2913  df-un 3078  df-in 3080  df-ss 3087  df-pw 3515  df-sn 3536  df-pr 3537  df-op 3539  df-br 3936  df-opab 3996  df-xp 4551  df-rel 4552  df-cnv 4553  df-co 4554  df-dm 4555  df-rn 4556  df-res 4557  df-ima 4558  df-er 6435  df-ec 6437  df-qs 6441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator