| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5ibcom | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 19-Jun-2007.) |
| Ref | Expression |
|---|---|
| imbitrid.1 | ⊢ (𝜑 → 𝜓) |
| imbitrid.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| syl5ibcom | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrid.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | imbitrid.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | imbitrid 154 | . 2 ⊢ (𝜒 → (𝜑 → 𝜃)) |
| 4 | 3 | com12 30 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimpcd 159 mob2 2944 rmob 3082 preqr1g 3796 issod 4354 sotritrieq 4360 nsuceq0g 4453 suctr 4456 nordeq 4580 suc11g 4593 iss 4992 poirr2 5062 xp11m 5108 tz6.12c 5588 fnbrfvb 5601 fvelimab 5617 foeqcnvco 5837 f1eqcocnv 5838 acexmidlemcase 5917 nna0r 6536 nnawordex 6587 ectocld 6660 ecoptocl 6681 mapsn 6749 eqeng 6825 fopwdom 6897 ordiso 7102 ltexnqq 7475 nsmallnqq 7479 nqprloc 7612 aptiprleml 7706 map2psrprg 7872 0re 8026 lttri3 8106 0cnALT 8216 reapti 8606 recnz 9419 zneo 9427 uzn0 9617 flqidz 10376 ceilqidz 10408 modqid2 10443 modqmuladdnn0 10460 frec2uzrand 10497 frecuzrdgtcl 10504 seq3id 10617 seq3z 10620 facdiv 10830 facwordi 10832 wrdnval 10965 maxleb 11381 fsumf1o 11555 dvdsnegb 11973 odd2np1lem 12037 odd2np1 12038 ltoddhalfle 12058 halfleoddlt 12059 opoe 12060 omoe 12061 opeo 12062 omeo 12063 gcddiv 12186 gcdzeq 12189 dvdssqim 12191 lcmgcdeq 12251 coprmdvds2 12261 rpmul 12266 divgcdcoprmex 12270 cncongr2 12272 dvdsprm 12305 coprm 12312 prmdvdsexp 12316 prmdiv 12403 pythagtriplem19 12451 pc2dvds 12499 pcadd 12509 prmpwdvds 12524 exmidunben 12643 intopsn 13010 ismgmid 13020 isgrpid2 13172 isgrpinv 13186 dfgrp3mlem 13230 imasgrp2 13240 imasrng 13512 imasring 13620 dvdsrcl2 13655 dvdsrtr 13657 dvdsrmul1 13658 lspsneq0 13982 dvdsrzring 14159 znunit 14215 baspartn 14286 bastop 14311 isopn3 14361 lgsdir 15276 lgsne0 15279 lgsquadlem3 15320 bj-peano4 15601 sbthomlem 15669 |
| Copyright terms: Public domain | W3C validator |