Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl5ibcom | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 19-Jun-2007.) |
Ref | Expression |
---|---|
syl5ib.1 | ⊢ (𝜑 → 𝜓) |
syl5ib.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
syl5ibcom | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5ib.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl5ib.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
3 | 1, 2 | syl5ib 153 | . 2 ⊢ (𝜒 → (𝜑 → 𝜃)) |
4 | 3 | com12 30 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biimpcd 158 mob2 2905 rmob 3042 preqr1g 3745 issod 4296 sotritrieq 4302 nsuceq0g 4395 suctr 4398 nordeq 4520 suc11g 4533 iss 4929 poirr2 4995 xp11m 5041 tz6.12c 5515 fnbrfvb 5526 fvelimab 5541 foeqcnvco 5757 f1eqcocnv 5758 acexmidlemcase 5836 nna0r 6442 nnawordex 6492 ectocld 6563 ecoptocl 6584 mapsn 6652 eqeng 6728 fopwdom 6798 ordiso 6997 ltexnqq 7345 nsmallnqq 7349 nqprloc 7482 aptiprleml 7576 map2psrprg 7742 0re 7895 lttri3 7974 0cnALT 8084 reapti 8473 recnz 9280 zneo 9288 uzn0 9477 flqidz 10217 ceilqidz 10247 modqid2 10282 modqmuladdnn0 10299 frec2uzrand 10336 frecuzrdgtcl 10343 seq3id 10439 seq3z 10442 facdiv 10647 facwordi 10649 maxleb 11154 fsumf1o 11327 dvdsnegb 11744 odd2np1lem 11805 odd2np1 11806 ltoddhalfle 11826 halfleoddlt 11827 opoe 11828 omoe 11829 opeo 11830 omeo 11831 gcddiv 11948 gcdzeq 11951 dvdssqim 11953 lcmgcdeq 12011 coprmdvds2 12021 rpmul 12026 divgcdcoprmex 12030 cncongr2 12032 dvdsprm 12065 coprm 12072 prmdvdsexp 12076 prmdiv 12163 pythagtriplem19 12210 pc2dvds 12257 pcadd 12267 prmpwdvds 12281 exmidunben 12355 baspartn 12648 bastop 12675 isopn3 12725 lgsdir 13536 lgsne0 13539 bj-peano4 13797 sbthomlem 13864 |
Copyright terms: Public domain | W3C validator |