| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5ibcom | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 19-Jun-2007.) |
| Ref | Expression |
|---|---|
| imbitrid.1 | ⊢ (𝜑 → 𝜓) |
| imbitrid.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| syl5ibcom | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrid.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | imbitrid.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | imbitrid 154 | . 2 ⊢ (𝜒 → (𝜑 → 𝜃)) |
| 4 | 3 | com12 30 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimpcd 159 mob2 2944 rmob 3082 preqr1g 3797 issod 4355 sotritrieq 4361 nsuceq0g 4454 suctr 4457 nordeq 4581 suc11g 4594 iss 4993 poirr2 5063 xp11m 5109 tz6.12c 5591 fnbrfvb 5604 fvelimab 5620 foeqcnvco 5840 f1eqcocnv 5841 acexmidlemcase 5920 nna0r 6545 nnawordex 6596 ectocld 6669 ecoptocl 6690 mapsn 6758 eqeng 6834 fopwdom 6906 ordiso 7111 ltexnqq 7492 nsmallnqq 7496 nqprloc 7629 aptiprleml 7723 map2psrprg 7889 0re 8043 lttri3 8123 0cnALT 8233 reapti 8623 recnz 9436 zneo 9444 uzn0 9634 flqidz 10393 ceilqidz 10425 modqid2 10460 modqmuladdnn0 10477 frec2uzrand 10514 frecuzrdgtcl 10521 seq3id 10634 seq3z 10637 facdiv 10847 facwordi 10849 wrdnval 10982 maxleb 11398 fsumf1o 11572 dvdsnegb 11990 odd2np1lem 12054 odd2np1 12055 ltoddhalfle 12075 halfleoddlt 12076 opoe 12077 omoe 12078 opeo 12079 omeo 12080 gcddiv 12211 gcdzeq 12214 dvdssqim 12216 lcmgcdeq 12276 coprmdvds2 12286 rpmul 12291 divgcdcoprmex 12295 cncongr2 12297 dvdsprm 12330 coprm 12337 prmdvdsexp 12341 prmdiv 12428 pythagtriplem19 12476 pc2dvds 12524 pcadd 12534 prmpwdvds 12549 exmidunben 12668 intopsn 13069 ismgmid 13079 imasmnd2 13154 isgrpid2 13242 isgrpinv 13256 dfgrp3mlem 13300 imasgrp2 13316 imasrng 13588 imasring 13696 dvdsrcl2 13731 dvdsrtr 13733 dvdsrmul1 13734 lspsneq0 14058 dvdsrzring 14235 znunit 14291 baspartn 14370 bastop 14395 isopn3 14445 lgsdir 15360 lgsne0 15363 lgsquadlem3 15404 bj-peano4 15685 sbthomlem 15756 |
| Copyright terms: Public domain | W3C validator |