| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5ibcom | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 19-Jun-2007.) |
| Ref | Expression |
|---|---|
| imbitrid.1 | ⊢ (𝜑 → 𝜓) |
| imbitrid.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| syl5ibcom | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrid.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | imbitrid.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | imbitrid 154 | . 2 ⊢ (𝜒 → (𝜑 → 𝜃)) |
| 4 | 3 | com12 30 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimpcd 159 mob2 2983 rmob 3122 preqr1g 3843 issod 4407 sotritrieq 4413 nsuceq0g 4506 suctr 4509 nordeq 4633 suc11g 4646 iss 5047 poirr2 5117 xp11m 5163 tz6.12c 5653 fnbrfvb 5666 fvelimab 5683 foeqcnvco 5907 f1eqcocnv 5908 acexmidlemcase 5989 nna0r 6614 nnawordex 6665 ectocld 6738 ecoptocl 6759 mapsn 6827 eqeng 6907 fopwdom 6985 ordiso 7191 ltexnqq 7583 nsmallnqq 7587 nqprloc 7720 aptiprleml 7814 map2psrprg 7980 0re 8134 lttri3 8214 0cnALT 8324 reapti 8714 recnz 9528 zneo 9536 uzn0 9726 flqidz 10493 ceilqidz 10525 modqid2 10560 modqmuladdnn0 10577 frec2uzrand 10614 frecuzrdgtcl 10621 seq3id 10734 seq3z 10737 facdiv 10947 facwordi 10949 wrdnval 11088 wrdl1s1 11149 maxleb 11713 fsumf1o 11887 dvdsnegb 12305 odd2np1lem 12369 odd2np1 12370 ltoddhalfle 12390 halfleoddlt 12391 opoe 12392 omoe 12393 opeo 12394 omeo 12395 gcddiv 12526 gcdzeq 12529 dvdssqim 12531 lcmgcdeq 12591 coprmdvds2 12601 rpmul 12606 divgcdcoprmex 12610 cncongr2 12612 dvdsprm 12645 coprm 12652 prmdvdsexp 12656 prmdiv 12743 pythagtriplem19 12791 pc2dvds 12839 pcadd 12849 prmpwdvds 12864 exmidunben 12983 intopsn 13386 ismgmid 13396 imasmnd2 13471 isgrpid2 13559 isgrpinv 13573 dfgrp3mlem 13617 imasgrp2 13633 imasrng 13905 imasring 14013 dvdsrcl2 14048 dvdsrtr 14050 dvdsrmul1 14051 lspsneq0 14375 dvdsrzring 14552 znunit 14608 baspartn 14709 bastop 14734 isopn3 14784 lgsdir 15699 lgsne0 15702 lgsquadlem3 15743 uhgrm 15863 upgrfnen 15883 umgrfnen 15893 bj-peano4 16248 sbthomlem 16324 |
| Copyright terms: Public domain | W3C validator |