| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5ibcom | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 19-Jun-2007.) |
| Ref | Expression |
|---|---|
| imbitrid.1 | ⊢ (𝜑 → 𝜓) |
| imbitrid.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| syl5ibcom | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrid.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | imbitrid.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | imbitrid 154 | . 2 ⊢ (𝜒 → (𝜑 → 𝜃)) |
| 4 | 3 | com12 30 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimpcd 159 mob2 2983 rmob 3122 preqr1g 3844 issod 4410 sotritrieq 4416 nsuceq0g 4509 suctr 4512 nordeq 4636 suc11g 4649 iss 5051 poirr2 5121 xp11m 5167 tz6.12c 5659 fnbrfvb 5674 fvelimab 5692 foeqcnvco 5920 f1eqcocnv 5921 acexmidlemcase 6002 nna0r 6632 nnawordex 6683 ectocld 6756 ecoptocl 6777 mapsn 6845 eqeng 6925 fopwdom 7005 ordiso 7211 ltexnqq 7603 nsmallnqq 7607 nqprloc 7740 aptiprleml 7834 map2psrprg 8000 0re 8154 lttri3 8234 0cnALT 8344 reapti 8734 recnz 9548 zneo 9556 uzn0 9746 flqidz 10514 ceilqidz 10546 modqid2 10581 modqmuladdnn0 10598 frec2uzrand 10635 frecuzrdgtcl 10642 seq3id 10755 seq3z 10758 facdiv 10968 facwordi 10970 wrdnval 11110 wrdl1s1 11171 maxleb 11735 fsumf1o 11909 dvdsnegb 12327 odd2np1lem 12391 odd2np1 12392 ltoddhalfle 12412 halfleoddlt 12413 opoe 12414 omoe 12415 opeo 12416 omeo 12417 gcddiv 12548 gcdzeq 12551 dvdssqim 12553 lcmgcdeq 12613 coprmdvds2 12623 rpmul 12628 divgcdcoprmex 12632 cncongr2 12634 dvdsprm 12667 coprm 12674 prmdvdsexp 12678 prmdiv 12765 pythagtriplem19 12813 pc2dvds 12861 pcadd 12871 prmpwdvds 12886 exmidunben 13005 intopsn 13408 ismgmid 13418 imasmnd2 13493 isgrpid2 13581 isgrpinv 13595 dfgrp3mlem 13639 imasgrp2 13655 imasrng 13927 imasring 14035 dvdsrcl2 14071 dvdsrtr 14073 dvdsrmul1 14074 lspsneq0 14398 dvdsrzring 14575 znunit 14631 baspartn 14732 bastop 14757 isopn3 14807 lgsdir 15722 lgsne0 15725 lgsquadlem3 15766 uhgrm 15886 upgrfnen 15906 umgrfnen 15916 bj-peano4 16342 sbthomlem 16423 |
| Copyright terms: Public domain | W3C validator |