| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl5ibcom | GIF version | ||
| Description: A mixed syllogism inference. (Contributed by NM, 19-Jun-2007.) |
| Ref | Expression |
|---|---|
| imbitrid.1 | ⊢ (𝜑 → 𝜓) |
| imbitrid.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| syl5ibcom | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrid.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | imbitrid.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 3 | 1, 2 | imbitrid 154 | . 2 ⊢ (𝜒 → (𝜑 → 𝜃)) |
| 4 | 3 | com12 30 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimpcd 159 mob2 2955 rmob 3093 preqr1g 3810 issod 4371 sotritrieq 4377 nsuceq0g 4470 suctr 4473 nordeq 4597 suc11g 4610 iss 5011 poirr2 5081 xp11m 5127 tz6.12c 5616 fnbrfvb 5629 fvelimab 5645 foeqcnvco 5869 f1eqcocnv 5870 acexmidlemcase 5949 nna0r 6574 nnawordex 6625 ectocld 6698 ecoptocl 6719 mapsn 6787 eqeng 6867 fopwdom 6945 ordiso 7150 ltexnqq 7534 nsmallnqq 7538 nqprloc 7671 aptiprleml 7765 map2psrprg 7931 0re 8085 lttri3 8165 0cnALT 8275 reapti 8665 recnz 9479 zneo 9487 uzn0 9677 flqidz 10442 ceilqidz 10474 modqid2 10509 modqmuladdnn0 10526 frec2uzrand 10563 frecuzrdgtcl 10570 seq3id 10683 seq3z 10686 facdiv 10896 facwordi 10898 wrdnval 11037 wrdl1s1 11098 maxleb 11577 fsumf1o 11751 dvdsnegb 12169 odd2np1lem 12233 odd2np1 12234 ltoddhalfle 12254 halfleoddlt 12255 opoe 12256 omoe 12257 opeo 12258 omeo 12259 gcddiv 12390 gcdzeq 12393 dvdssqim 12395 lcmgcdeq 12455 coprmdvds2 12465 rpmul 12470 divgcdcoprmex 12474 cncongr2 12476 dvdsprm 12509 coprm 12516 prmdvdsexp 12520 prmdiv 12607 pythagtriplem19 12655 pc2dvds 12703 pcadd 12713 prmpwdvds 12728 exmidunben 12847 intopsn 13249 ismgmid 13259 imasmnd2 13334 isgrpid2 13422 isgrpinv 13436 dfgrp3mlem 13480 imasgrp2 13496 imasrng 13768 imasring 13876 dvdsrcl2 13911 dvdsrtr 13913 dvdsrmul1 13914 lspsneq0 14238 dvdsrzring 14415 znunit 14471 baspartn 14572 bastop 14597 isopn3 14647 lgsdir 15562 lgsne0 15565 lgsquadlem3 15606 uhgrm 15724 upgrfnen 15744 umgrfnen 15754 bj-peano4 16005 sbthomlem 16079 |
| Copyright terms: Public domain | W3C validator |