![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5ibcom | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 19-Jun-2007.) |
Ref | Expression |
---|---|
imbitrid.1 | ⊢ (𝜑 → 𝜓) |
imbitrid.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
syl5ibcom | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbitrid.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | imbitrid.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
3 | 1, 2 | imbitrid 154 | . 2 ⊢ (𝜒 → (𝜑 → 𝜃)) |
4 | 3 | com12 30 | 1 ⊢ (𝜑 → (𝜒 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: biimpcd 159 mob2 2940 rmob 3078 preqr1g 3792 issod 4350 sotritrieq 4356 nsuceq0g 4449 suctr 4452 nordeq 4576 suc11g 4589 iss 4988 poirr2 5058 xp11m 5104 tz6.12c 5584 fnbrfvb 5597 fvelimab 5613 foeqcnvco 5833 f1eqcocnv 5834 acexmidlemcase 5913 nna0r 6531 nnawordex 6582 ectocld 6655 ecoptocl 6676 mapsn 6744 eqeng 6820 fopwdom 6892 ordiso 7095 ltexnqq 7468 nsmallnqq 7472 nqprloc 7605 aptiprleml 7699 map2psrprg 7865 0re 8019 lttri3 8099 0cnALT 8209 reapti 8598 recnz 9410 zneo 9418 uzn0 9608 flqidz 10355 ceilqidz 10387 modqid2 10422 modqmuladdnn0 10439 frec2uzrand 10476 frecuzrdgtcl 10483 seq3id 10596 seq3z 10599 facdiv 10809 facwordi 10811 wrdnval 10944 maxleb 11360 fsumf1o 11533 dvdsnegb 11951 odd2np1lem 12013 odd2np1 12014 ltoddhalfle 12034 halfleoddlt 12035 opoe 12036 omoe 12037 opeo 12038 omeo 12039 gcddiv 12156 gcdzeq 12159 dvdssqim 12161 lcmgcdeq 12221 coprmdvds2 12231 rpmul 12236 divgcdcoprmex 12240 cncongr2 12242 dvdsprm 12275 coprm 12282 prmdvdsexp 12286 prmdiv 12373 pythagtriplem19 12420 pc2dvds 12468 pcadd 12478 prmpwdvds 12493 exmidunben 12583 intopsn 12950 ismgmid 12960 isgrpid2 13112 isgrpinv 13126 dfgrp3mlem 13170 imasgrp2 13180 imasrng 13452 imasring 13560 dvdsrcl2 13595 dvdsrtr 13597 dvdsrmul1 13598 lspsneq0 13922 dvdsrzring 14091 znunit 14147 baspartn 14218 bastop 14243 isopn3 14293 lgsdir 15151 lgsne0 15154 bj-peano4 15447 sbthomlem 15515 |
Copyright terms: Public domain | W3C validator |