ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwi GIF version

Theorem elpwi 3568
Description: Subset relation implied by membership in a power class. (Contributed by NM, 17-Feb-2007.)
Assertion
Ref Expression
elpwi (𝐴 ∈ 𝒫 𝐵𝐴𝐵)

Proof of Theorem elpwi
StepHypRef Expression
1 elpwg 3567 . 2 (𝐴 ∈ 𝒫 𝐵 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
21ibi 175 1 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2136  wss 3116  𝒫 cpw 3559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561
This theorem is referenced by:  elpwid  3570  elelpwi  3571  elpw2g  4135  eldifpw  4455  iunpw  4458  f1opw2  6044  pw1dc1  6879  fi0  6940  pw1on  7182  cnntr  12865
  Copyright terms: Public domain W3C validator