ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwi GIF version

Theorem elpwi 3629
Description: Subset relation implied by membership in a power class. (Contributed by NM, 17-Feb-2007.)
Assertion
Ref Expression
elpwi (𝐴 ∈ 𝒫 𝐵𝐴𝐵)

Proof of Theorem elpwi
StepHypRef Expression
1 elpwg 3628 . 2 (𝐴 ∈ 𝒫 𝐵 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
21ibi 176 1 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  wss 3170  𝒫 cpw 3620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-in 3176  df-ss 3183  df-pw 3622
This theorem is referenced by:  elpwid  3631  elelpwi  3632  elpw2g  4207  eldifpw  4531  iunpw  4534  f1opw2  6164  pw1dc1  7025  fi0  7091  pw1on  7353  lspf  14221  cnntr  14767  2omap  16067
  Copyright terms: Public domain W3C validator