Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwi GIF version

Theorem elpwi 3519
 Description: Subset relation implied by membership in a power class. (Contributed by NM, 17-Feb-2007.)
Assertion
Ref Expression
elpwi (𝐴 ∈ 𝒫 𝐵𝐴𝐵)

Proof of Theorem elpwi
StepHypRef Expression
1 elpwg 3518 . 2 (𝐴 ∈ 𝒫 𝐵 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
21ibi 175 1 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∈ wcel 1480   ⊆ wss 3071  𝒫 cpw 3510 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-in 3077  df-ss 3084  df-pw 3512 This theorem is referenced by:  elpwid  3521  elelpwi  3522  elpw2g  4081  eldifpw  4398  iunpw  4401  f1opw2  5976  fi0  6863  cnntr  12408
 Copyright terms: Public domain W3C validator