| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpwi | GIF version | ||
| Description: Subset relation implied by membership in a power class. (Contributed by NM, 17-Feb-2007.) |
| Ref | Expression |
|---|---|
| elpwi | ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwg 3628 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 2 | 1 | ibi 176 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ⊆ wss 3170 𝒫 cpw 3620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3176 df-ss 3183 df-pw 3622 |
| This theorem is referenced by: elpwid 3631 elelpwi 3632 elpw2g 4207 eldifpw 4531 iunpw 4534 f1opw2 6164 pw1dc1 7025 fi0 7091 pw1on 7353 lspf 14221 cnntr 14767 2omap 16067 |
| Copyright terms: Public domain | W3C validator |