Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elpwi | GIF version |
Description: Subset relation implied by membership in a power class. (Contributed by NM, 17-Feb-2007.) |
Ref | Expression |
---|---|
elpwi | ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwg 3580 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
2 | 1 | ibi 176 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2146 ⊆ wss 3127 𝒫 cpw 3572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-in 3133 df-ss 3140 df-pw 3574 |
This theorem is referenced by: elpwid 3583 elelpwi 3584 elpw2g 4151 eldifpw 4471 iunpw 4474 f1opw2 6067 pw1dc1 6903 fi0 6964 pw1on 7215 cnntr 13276 |
Copyright terms: Public domain | W3C validator |