| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpwi | GIF version | ||
| Description: Subset relation implied by membership in a power class. (Contributed by NM, 17-Feb-2007.) |
| Ref | Expression |
|---|---|
| elpwi | ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwg 3657 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 2 | 1 | ibi 176 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ⊆ wss 3197 𝒫 cpw 3649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 |
| This theorem is referenced by: elpwid 3660 elelpwi 3661 elpw2g 4239 eldifpw 4567 iunpw 4570 f1opw2 6210 pw1dc1 7072 fi0 7138 pw1m 7405 pw1on 7407 lspf 14347 cnntr 14893 edgssv2en 15991 2omap 16318 pw1map 16320 |
| Copyright terms: Public domain | W3C validator |