![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elpwid | GIF version |
Description: An element of a power class is a subclass. Deduction form of elpwi 3610. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
elpwid.1 | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
Ref | Expression |
---|---|
elpwid | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwid.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) | |
2 | elpwi 3610 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ⊆ wss 3153 𝒫 cpw 3601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 df-ss 3166 df-pw 3603 |
This theorem is referenced by: fopwdom 6892 ssenen 6907 fival 7029 fiuni 7037 3nelsucpw1 7294 elnp1st2nd 7536 ixxssxr 9966 elfzoelz 10213 restid2 12859 epttop 14258 neiss2 14310 blssm 14589 blin2 14600 cncfrss 14730 cncfrss2 14731 plybss 14879 pwle2 15489 |
Copyright terms: Public domain | W3C validator |