ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwid GIF version

Theorem elpwid 3660
Description: An element of a power class is a subclass. Deduction form of elpwi 3658. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
elpwid.1 (𝜑𝐴 ∈ 𝒫 𝐵)
Assertion
Ref Expression
elpwid (𝜑𝐴𝐵)

Proof of Theorem elpwid
StepHypRef Expression
1 elpwid.1 . 2 (𝜑𝐴 ∈ 𝒫 𝐵)
2 elpwi 3658 . 2 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
31, 2syl 14 1 (𝜑𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  wss 3197  𝒫 cpw 3649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651
This theorem is referenced by:  fopwdom  7005  ssenen  7020  fival  7145  fiuni  7153  3nelsucpw1  7427  elnp1st2nd  7671  ixxssxr  10104  elfzoelz  10351  restid2  13289  epttop  14772  neiss2  14824  blssm  15103  blin2  15114  cncfrss  15257  cncfrss2  15258  dvidsslem  15375  dvconstss  15380  plybss  15415  uhgrss  15883  upgrss  15907  usgrss  15983  pw1ndom3lem  16382  pwle2  16393
  Copyright terms: Public domain W3C validator