| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpwid | GIF version | ||
| Description: An element of a power class is a subclass. Deduction form of elpwi 3658. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| elpwid.1 | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Ref | Expression |
|---|---|
| elpwid | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwid.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) | |
| 2 | elpwi 3658 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ⊆ wss 3197 𝒫 cpw 3649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 |
| This theorem is referenced by: fopwdom 7005 ssenen 7020 fival 7145 fiuni 7153 3nelsucpw1 7427 elnp1st2nd 7671 ixxssxr 10104 elfzoelz 10351 restid2 13289 epttop 14772 neiss2 14824 blssm 15103 blin2 15114 cncfrss 15257 cncfrss2 15258 dvidsslem 15375 dvconstss 15380 plybss 15415 uhgrss 15883 upgrss 15907 usgrss 15983 pw1ndom3lem 16382 pwle2 16393 |
| Copyright terms: Public domain | W3C validator |