ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwid GIF version

Theorem elpwid 3577
Description: An element of a power class is a subclass. Deduction form of elpwi 3575. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
elpwid.1 (𝜑𝐴 ∈ 𝒫 𝐵)
Assertion
Ref Expression
elpwid (𝜑𝐴𝐵)

Proof of Theorem elpwid
StepHypRef Expression
1 elpwid.1 . 2 (𝜑𝐴 ∈ 𝒫 𝐵)
2 elpwi 3575 . 2 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
31, 2syl 14 1 (𝜑𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141  wss 3121  𝒫 cpw 3566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568
This theorem is referenced by:  fopwdom  6814  ssenen  6829  fival  6947  fiuni  6955  3nelsucpw1  7211  elnp1st2nd  7438  ixxssxr  9857  elfzoelz  10103  restid2  12588  epttop  12884  neiss2  12936  blssm  13215  blin2  13226  cncfrss  13356  cncfrss2  13357  pwle2  14031
  Copyright terms: Public domain W3C validator