| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpwid | GIF version | ||
| Description: An element of a power class is a subclass. Deduction form of elpwi 3626. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| elpwid.1 | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Ref | Expression |
|---|---|
| elpwid | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwid.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) | |
| 2 | elpwi 3626 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ⊆ wss 3167 𝒫 cpw 3617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3173 df-ss 3180 df-pw 3619 |
| This theorem is referenced by: fopwdom 6940 ssenen 6955 fival 7079 fiuni 7087 3nelsucpw1 7353 elnp1st2nd 7596 ixxssxr 10029 elfzoelz 10276 restid2 13124 epttop 14606 neiss2 14658 blssm 14937 blin2 14948 cncfrss 15091 cncfrss2 15092 dvidsslem 15209 dvconstss 15214 plybss 15249 uhgrss 15715 pwle2 16009 |
| Copyright terms: Public domain | W3C validator |