| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpwid | GIF version | ||
| Description: An element of a power class is a subclass. Deduction form of elpwi 3638. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| elpwid.1 | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Ref | Expression |
|---|---|
| elpwid | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwid.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) | |
| 2 | elpwi 3638 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 ⊆ wss 3177 𝒫 cpw 3629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-in 3183 df-ss 3190 df-pw 3631 |
| This theorem is referenced by: fopwdom 6965 ssenen 6980 fival 7105 fiuni 7113 3nelsucpw1 7387 elnp1st2nd 7631 ixxssxr 10064 elfzoelz 10311 restid2 13247 epttop 14729 neiss2 14781 blssm 15060 blin2 15071 cncfrss 15214 cncfrss2 15215 dvidsslem 15332 dvconstss 15337 plybss 15372 uhgrss 15840 upgrss 15864 usgrss 15940 pwle2 16275 |
| Copyright terms: Public domain | W3C validator |