| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpwid | GIF version | ||
| Description: An element of a power class is a subclass. Deduction form of elpwi 3615. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| elpwid.1 | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
| Ref | Expression |
|---|---|
| elpwid | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwid.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) | |
| 2 | elpwi 3615 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ⊆ wss 3157 𝒫 cpw 3606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3608 |
| This theorem is referenced by: fopwdom 6898 ssenen 6913 fival 7037 fiuni 7045 3nelsucpw1 7303 elnp1st2nd 7545 ixxssxr 9977 elfzoelz 10224 restid2 12929 epttop 14336 neiss2 14388 blssm 14667 blin2 14678 cncfrss 14821 cncfrss2 14822 dvidsslem 14939 dvconstss 14944 plybss 14979 pwle2 15653 |
| Copyright terms: Public domain | W3C validator |