ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwid GIF version

Theorem elpwid 3617
Description: An element of a power class is a subclass. Deduction form of elpwi 3615. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
elpwid.1 (𝜑𝐴 ∈ 𝒫 𝐵)
Assertion
Ref Expression
elpwid (𝜑𝐴𝐵)

Proof of Theorem elpwid
StepHypRef Expression
1 elpwid.1 . 2 (𝜑𝐴 ∈ 𝒫 𝐵)
2 elpwi 3615 . 2 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
31, 2syl 14 1 (𝜑𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  wss 3157  𝒫 cpw 3606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-pw 3608
This theorem is referenced by:  fopwdom  6906  ssenen  6921  fival  7045  fiuni  7053  3nelsucpw1  7317  elnp1st2nd  7560  ixxssxr  9992  elfzoelz  10239  restid2  12950  epttop  14410  neiss2  14462  blssm  14741  blin2  14752  cncfrss  14895  cncfrss2  14896  dvidsslem  15013  dvconstss  15018  plybss  15053  pwle2  15729
  Copyright terms: Public domain W3C validator