ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwid GIF version

Theorem elpwid 3628
Description: An element of a power class is a subclass. Deduction form of elpwi 3626. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
elpwid.1 (𝜑𝐴 ∈ 𝒫 𝐵)
Assertion
Ref Expression
elpwid (𝜑𝐴𝐵)

Proof of Theorem elpwid
StepHypRef Expression
1 elpwid.1 . 2 (𝜑𝐴 ∈ 𝒫 𝐵)
2 elpwi 3626 . 2 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
31, 2syl 14 1 (𝜑𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  wss 3167  𝒫 cpw 3617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-in 3173  df-ss 3180  df-pw 3619
This theorem is referenced by:  fopwdom  6940  ssenen  6955  fival  7079  fiuni  7087  3nelsucpw1  7353  elnp1st2nd  7596  ixxssxr  10029  elfzoelz  10276  restid2  13124  epttop  14606  neiss2  14658  blssm  14937  blin2  14948  cncfrss  15091  cncfrss2  15092  dvidsslem  15209  dvconstss  15214  plybss  15249  uhgrss  15715  pwle2  16009
  Copyright terms: Public domain W3C validator