| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > unipw | GIF version | ||
| Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.) | 
| Ref | Expression | 
|---|---|
| unipw | ⊢ ∪ 𝒫 𝐴 = 𝐴 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eluni 3842 | . . . 4 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴)) | |
| 2 | elelpwi 3617 | . . . . 5 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝐴) | |
| 3 | 2 | exlimiv 1612 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝐴) | 
| 4 | 1, 3 | sylbi 121 | . . 3 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 → 𝑥 ∈ 𝐴) | 
| 5 | vex 2766 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 6 | 5 | snid 3653 | . . . 4 ⊢ 𝑥 ∈ {𝑥} | 
| 7 | snelpwi 4245 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝒫 𝐴) | |
| 8 | elunii 3844 | . . . 4 ⊢ ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 ∈ ∪ 𝒫 𝐴) | |
| 9 | 6, 7, 8 | sylancr 414 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝒫 𝐴) | 
| 10 | 4, 9 | impbii 126 | . 2 ⊢ (𝑥 ∈ ∪ 𝒫 𝐴 ↔ 𝑥 ∈ 𝐴) | 
| 11 | 10 | eqriv 2193 | 1 ⊢ ∪ 𝒫 𝐴 = 𝐴 | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 𝒫 cpw 3605 {csn 3622 ∪ cuni 3839 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-uni 3840 | 
| This theorem is referenced by: pwtr 4252 pwexb 4509 univ 4511 unixpss 4776 eltg4i 14291 distop 14321 distopon 14323 distps 14327 ntrss2 14357 isopn3 14361 discld 14372 txdis 14513 | 
| Copyright terms: Public domain | W3C validator |