ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unipw GIF version

Theorem unipw 4250
Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.)
Assertion
Ref Expression
unipw 𝒫 𝐴 = 𝐴

Proof of Theorem unipw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 3842 . . . 4 (𝑥 𝒫 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦 ∈ 𝒫 𝐴))
2 elelpwi 3617 . . . . 5 ((𝑥𝑦𝑦 ∈ 𝒫 𝐴) → 𝑥𝐴)
32exlimiv 1612 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ 𝒫 𝐴) → 𝑥𝐴)
41, 3sylbi 121 . . 3 (𝑥 𝒫 𝐴𝑥𝐴)
5 vex 2766 . . . . 5 𝑥 ∈ V
65snid 3653 . . . 4 𝑥 ∈ {𝑥}
7 snelpwi 4245 . . . 4 (𝑥𝐴 → {𝑥} ∈ 𝒫 𝐴)
8 elunii 3844 . . . 4 ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 𝒫 𝐴)
96, 7, 8sylancr 414 . . 3 (𝑥𝐴𝑥 𝒫 𝐴)
104, 9impbii 126 . 2 (𝑥 𝒫 𝐴𝑥𝐴)
1110eqriv 2193 1 𝒫 𝐴 = 𝐴
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wex 1506  wcel 2167  𝒫 cpw 3605  {csn 3622   cuni 3839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-uni 3840
This theorem is referenced by:  pwtr  4252  pwexb  4509  univ  4511  unixpss  4776  eltg4i  14291  distop  14321  distopon  14323  distps  14327  ntrss2  14357  isopn3  14361  discld  14372  txdis  14513
  Copyright terms: Public domain W3C validator