ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unipw GIF version

Theorem unipw 4139
Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.)
Assertion
Ref Expression
unipw 𝒫 𝐴 = 𝐴

Proof of Theorem unipw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 3739 . . . 4 (𝑥 𝒫 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦 ∈ 𝒫 𝐴))
2 elelpwi 3522 . . . . 5 ((𝑥𝑦𝑦 ∈ 𝒫 𝐴) → 𝑥𝐴)
32exlimiv 1577 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ 𝒫 𝐴) → 𝑥𝐴)
41, 3sylbi 120 . . 3 (𝑥 𝒫 𝐴𝑥𝐴)
5 vex 2689 . . . . 5 𝑥 ∈ V
65snid 3556 . . . 4 𝑥 ∈ {𝑥}
7 snelpwi 4134 . . . 4 (𝑥𝐴 → {𝑥} ∈ 𝒫 𝐴)
8 elunii 3741 . . . 4 ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 𝒫 𝐴)
96, 7, 8sylancr 410 . . 3 (𝑥𝐴𝑥 𝒫 𝐴)
104, 9impbii 125 . 2 (𝑥 𝒫 𝐴𝑥𝐴)
1110eqriv 2136 1 𝒫 𝐴 = 𝐴
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1331  wex 1468  wcel 1480  𝒫 cpw 3510  {csn 3527   cuni 3736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-uni 3737
This theorem is referenced by:  pwtr  4141  pwexb  4395  univ  4397  unixpss  4652  eltg4i  12224  distop  12254  distopon  12256  distps  12260  ntrss2  12290  isopn3  12294  discld  12305  txdis  12446
  Copyright terms: Public domain W3C validator