ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unipw GIF version

Theorem unipw 4260
Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.)
Assertion
Ref Expression
unipw 𝒫 𝐴 = 𝐴

Proof of Theorem unipw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 3852 . . . 4 (𝑥 𝒫 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦 ∈ 𝒫 𝐴))
2 elelpwi 3627 . . . . 5 ((𝑥𝑦𝑦 ∈ 𝒫 𝐴) → 𝑥𝐴)
32exlimiv 1620 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ 𝒫 𝐴) → 𝑥𝐴)
41, 3sylbi 121 . . 3 (𝑥 𝒫 𝐴𝑥𝐴)
5 vex 2774 . . . . 5 𝑥 ∈ V
65snid 3663 . . . 4 𝑥 ∈ {𝑥}
7 snelpwi 4255 . . . 4 (𝑥𝐴 → {𝑥} ∈ 𝒫 𝐴)
8 elunii 3854 . . . 4 ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 𝒫 𝐴)
96, 7, 8sylancr 414 . . 3 (𝑥𝐴𝑥 𝒫 𝐴)
104, 9impbii 126 . 2 (𝑥 𝒫 𝐴𝑥𝐴)
1110eqriv 2201 1 𝒫 𝐴 = 𝐴
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1372  wex 1514  wcel 2175  𝒫 cpw 3615  {csn 3632   cuni 3849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-uni 3850
This theorem is referenced by:  pwtr  4262  pwexb  4519  univ  4521  unixpss  4786  eltg4i  14445  distop  14475  distopon  14477  distps  14481  ntrss2  14511  isopn3  14515  discld  14526  txdis  14667
  Copyright terms: Public domain W3C validator