ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unipw GIF version

Theorem unipw 4246
Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.)
Assertion
Ref Expression
unipw 𝒫 𝐴 = 𝐴

Proof of Theorem unipw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 3838 . . . 4 (𝑥 𝒫 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦 ∈ 𝒫 𝐴))
2 elelpwi 3613 . . . . 5 ((𝑥𝑦𝑦 ∈ 𝒫 𝐴) → 𝑥𝐴)
32exlimiv 1609 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ 𝒫 𝐴) → 𝑥𝐴)
41, 3sylbi 121 . . 3 (𝑥 𝒫 𝐴𝑥𝐴)
5 vex 2763 . . . . 5 𝑥 ∈ V
65snid 3649 . . . 4 𝑥 ∈ {𝑥}
7 snelpwi 4241 . . . 4 (𝑥𝐴 → {𝑥} ∈ 𝒫 𝐴)
8 elunii 3840 . . . 4 ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 𝒫 𝐴)
96, 7, 8sylancr 414 . . 3 (𝑥𝐴𝑥 𝒫 𝐴)
104, 9impbii 126 . 2 (𝑥 𝒫 𝐴𝑥𝐴)
1110eqriv 2190 1 𝒫 𝐴 = 𝐴
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wex 1503  wcel 2164  𝒫 cpw 3601  {csn 3618   cuni 3835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-uni 3836
This theorem is referenced by:  pwtr  4248  pwexb  4505  univ  4507  unixpss  4772  eltg4i  14223  distop  14253  distopon  14255  distps  14259  ntrss2  14289  isopn3  14293  discld  14304  txdis  14445
  Copyright terms: Public domain W3C validator