| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseld | GIF version | ||
| Description: Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.) |
| Ref | Expression |
|---|---|
| sseld.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| sseld | ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseld.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssel 3178 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sselda 3184 sseldd 3185 ssneld 3186 elelpwi 3618 ssbrd 4077 uniopel 4290 onintonm 4554 sucprcreg 4586 ordsuc 4600 0elnn 4656 dmrnssfld 4930 nfunv 5292 opelf 5432 fvimacnv 5680 ffvelcdm 5698 resflem 5729 f1imass 5824 dftpos3 6329 nnmordi 6583 mapsn 6758 ixpf 6788 pw2f1odclem 6904 diffifi 6964 ordiso2 7110 difinfinf 7176 exmidapne 7345 prarloclemarch2 7505 ltexprlemrl 7696 cauappcvgprlemladdrl 7743 caucvgprlemladdrl 7764 caucvgprlem1 7765 axpre-suploclemres 7987 uzind 9456 supinfneg 9688 infsupneg 9689 ixxssxr 9994 elfz0add 10214 fzoss1 10266 frecuzrdgrclt 10526 fsum3cvg 11562 isumrpcl 11678 fproddccvg 11756 reumodprminv 12449 issubmnd 13146 issubg2m 13397 eqgid 13434 issubrng2 13844 subrgdvds 13869 issubrg2 13875 lssats2 14048 rnglidlmmgm 14130 rnglidlmsgrp 14131 rnglidlrng 14132 mplbasss 14330 lmtopcnp 14594 txuni2 14600 tx1cn 14613 tx2cn 14614 txlm 14623 imasnopn 14643 xmetunirn 14702 mopnval 14786 metrest 14850 dedekindicc 14977 ivthdec 14988 limcimolemlt 15008 plyssc 15083 bj-charfundc 15562 bj-nnord 15712 |
| Copyright terms: Public domain | W3C validator |