| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseld | GIF version | ||
| Description: Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.) |
| Ref | Expression |
|---|---|
| sseld.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| sseld | ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseld.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssel 3191 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: sselda 3197 sseldd 3198 ssneld 3199 elelpwi 3633 ssbrd 4094 uniopel 4309 onintonm 4573 sucprcreg 4605 ordsuc 4619 0elnn 4675 dmrnssfld 4950 nfunv 5313 opelf 5458 fvimacnv 5708 ffvelcdm 5726 resflem 5757 f1imass 5856 dftpos3 6361 nnmordi 6615 mapsn 6790 ixpf 6820 pw2f1odclem 6946 diffifi 7006 ordiso2 7152 difinfinf 7218 exmidapne 7392 prarloclemarch2 7552 ltexprlemrl 7743 cauappcvgprlemladdrl 7790 caucvgprlemladdrl 7811 caucvgprlem1 7812 axpre-suploclemres 8034 uzind 9504 supinfneg 9736 infsupneg 9737 ixxssxr 10042 elfz0add 10262 fzoss1 10315 elfzoextl 10342 frecuzrdgrclt 10582 ccatval2 11077 swrdswrd 11181 fsum3cvg 11764 isumrpcl 11880 fproddccvg 11958 reumodprminv 12651 issubmnd 13349 issubg2m 13600 eqgid 13637 issubrng2 14047 subrgdvds 14072 issubrg2 14078 lssats2 14251 rnglidlmmgm 14333 rnglidlmsgrp 14334 rnglidlrng 14335 mplbasss 14533 lmtopcnp 14797 txuni2 14803 tx1cn 14816 tx2cn 14817 txlm 14826 imasnopn 14846 xmetunirn 14905 mopnval 14989 metrest 15053 dedekindicc 15180 ivthdec 15191 limcimolemlt 15211 plyssc 15286 bj-charfundc 15882 bj-nnord 16032 |
| Copyright terms: Public domain | W3C validator |