| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseld | GIF version | ||
| Description: Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.) |
| Ref | Expression |
|---|---|
| sseld.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| sseld | ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseld.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssel 3218 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sselda 3224 sseldd 3225 ssneld 3226 elelpwi 3661 ssbrd 4125 uniopel 4342 onintonm 4608 sucprcreg 4640 ordsuc 4654 0elnn 4710 dmrnssfld 4986 nfunv 5350 opelf 5495 fvimacnv 5749 ffvelcdm 5767 resflem 5798 f1imass 5897 dftpos3 6406 nnmordi 6660 mapsn 6835 ixpf 6865 pw2f1odclem 6991 diffifi 7052 ordiso2 7198 difinfinf 7264 exmidapne 7442 prarloclemarch2 7602 ltexprlemrl 7793 cauappcvgprlemladdrl 7840 caucvgprlemladdrl 7861 caucvgprlem1 7862 axpre-suploclemres 8084 uzind 9554 supinfneg 9786 infsupneg 9787 ixxssxr 10092 elfz0add 10312 fzoss1 10365 elfzoextl 10392 frecuzrdgrclt 10632 ccatval2 11128 swrdswrd 11232 pfxccatin12lem2a 11254 swrdccatin2 11256 pfxccatpfx2 11264 fsum3cvg 11884 isumrpcl 12000 fproddccvg 12078 reumodprminv 12771 issubmnd 13470 issubg2m 13721 eqgid 13758 issubrng2 14168 subrgdvds 14193 issubrg2 14199 lssats2 14372 rnglidlmmgm 14454 rnglidlmsgrp 14455 rnglidlrng 14456 mplbasss 14654 lmtopcnp 14918 txuni2 14924 tx1cn 14937 tx2cn 14938 txlm 14947 imasnopn 14967 xmetunirn 15026 mopnval 15110 metrest 15174 dedekindicc 15301 ivthdec 15312 limcimolemlt 15332 plyssc 15407 edgupgren 15933 bj-charfundc 16129 bj-nnord 16279 |
| Copyright terms: Public domain | W3C validator |