![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseld | GIF version |
Description: Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.) |
Ref | Expression |
---|---|
sseld.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
sseld | ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseld.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssel 3174 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: sselda 3180 sseldd 3181 ssneld 3182 elelpwi 3614 ssbrd 4073 uniopel 4286 onintonm 4550 sucprcreg 4582 ordsuc 4596 0elnn 4652 dmrnssfld 4926 nfunv 5288 opelf 5426 fvimacnv 5674 ffvelcdm 5692 resflem 5723 f1imass 5818 dftpos3 6317 nnmordi 6571 mapsn 6746 ixpf 6776 pw2f1odclem 6892 diffifi 6952 ordiso2 7096 difinfinf 7162 exmidapne 7322 prarloclemarch2 7481 ltexprlemrl 7672 cauappcvgprlemladdrl 7719 caucvgprlemladdrl 7740 caucvgprlem1 7741 axpre-suploclemres 7963 uzind 9431 supinfneg 9663 infsupneg 9664 ixxssxr 9969 elfz0add 10189 fzoss1 10241 frecuzrdgrclt 10489 fsum3cvg 11524 isumrpcl 11640 fproddccvg 11718 reumodprminv 12394 issubmnd 13026 issubg2m 13262 eqgid 13299 issubrng2 13709 subrgdvds 13734 issubrg2 13740 lssats2 13913 rnglidlmmgm 13995 rnglidlmsgrp 13996 rnglidlrng 13997 lmtopcnp 14429 txuni2 14435 tx1cn 14448 tx2cn 14449 txlm 14458 imasnopn 14478 xmetunirn 14537 mopnval 14621 metrest 14685 dedekindicc 14812 ivthdec 14823 limcimolemlt 14843 plyssc 14918 bj-charfundc 15370 bj-nnord 15520 |
Copyright terms: Public domain | W3C validator |