| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseld | GIF version | ||
| Description: Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.) |
| Ref | Expression |
|---|---|
| sseld.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| sseld | ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseld.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssel 3186 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: sselda 3192 sseldd 3193 ssneld 3194 elelpwi 3627 ssbrd 4086 uniopel 4299 onintonm 4563 sucprcreg 4595 ordsuc 4609 0elnn 4665 dmrnssfld 4939 nfunv 5301 opelf 5441 fvimacnv 5689 ffvelcdm 5707 resflem 5738 f1imass 5833 dftpos3 6338 nnmordi 6592 mapsn 6767 ixpf 6797 pw2f1odclem 6913 diffifi 6973 ordiso2 7119 difinfinf 7185 exmidapne 7354 prarloclemarch2 7514 ltexprlemrl 7705 cauappcvgprlemladdrl 7752 caucvgprlemladdrl 7773 caucvgprlem1 7774 axpre-suploclemres 7996 uzind 9466 supinfneg 9698 infsupneg 9699 ixxssxr 10004 elfz0add 10224 fzoss1 10276 elfzoextl 10301 frecuzrdgrclt 10541 ccatval2 11029 fsum3cvg 11608 isumrpcl 11724 fproddccvg 11802 reumodprminv 12495 issubmnd 13192 issubg2m 13443 eqgid 13480 issubrng2 13890 subrgdvds 13915 issubrg2 13921 lssats2 14094 rnglidlmmgm 14176 rnglidlmsgrp 14177 rnglidlrng 14178 mplbasss 14376 lmtopcnp 14640 txuni2 14646 tx1cn 14659 tx2cn 14660 txlm 14669 imasnopn 14689 xmetunirn 14748 mopnval 14832 metrest 14896 dedekindicc 15023 ivthdec 15034 limcimolemlt 15054 plyssc 15129 bj-charfundc 15608 bj-nnord 15758 |
| Copyright terms: Public domain | W3C validator |