ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elinel2 GIF version

Theorem elinel2 3359
Description: Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
elinel2 (𝐴 ∈ (𝐵𝐶) → 𝐴𝐶)

Proof of Theorem elinel2
StepHypRef Expression
1 elin 3355 . 2 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
21simprbi 275 1 (𝐴 ∈ (𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175  cin 3164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-in 3171
This theorem is referenced by:  elin2d  3362  fival  7071  subrngpropd  13949  subrgpropd  13986  sralmod  14183  blres  14877  limcresi  15109  elply2  15178  pilem3  15226  taupi  15974
  Copyright terms: Public domain W3C validator