| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elinel2 | GIF version | ||
| Description: Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| elinel2 | ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3387 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
| 2 | 1 | simprbi 275 | 1 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∩ cin 3196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 |
| This theorem is referenced by: elin2d 3394 fival 7133 subrngpropd 14174 subrgpropd 14211 sralmod 14408 blres 15102 limcresi 15334 elply2 15403 pilem3 15451 taupi 16400 |
| Copyright terms: Public domain | W3C validator |