![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funfvima | GIF version |
Description: A function's value in a preimage belongs to the image. (Contributed by NM, 23-Sep-2003.) |
Ref | Expression |
---|---|
funfvima | ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 4940 | . . . . . . 7 ⊢ dom (𝐹 ↾ 𝐴) = (𝐴 ∩ dom 𝐹) | |
2 | 1 | elin2 3335 | . . . . . 6 ⊢ (𝐵 ∈ dom (𝐹 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ dom 𝐹)) |
3 | funres 5269 | . . . . . . . . 9 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
4 | fvelrn 5660 | . . . . . . . . 9 ⊢ ((Fun (𝐹 ↾ 𝐴) ∧ 𝐵 ∈ dom (𝐹 ↾ 𝐴)) → ((𝐹 ↾ 𝐴)‘𝐵) ∈ ran (𝐹 ↾ 𝐴)) | |
5 | 3, 4 | sylan 283 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom (𝐹 ↾ 𝐴)) → ((𝐹 ↾ 𝐴)‘𝐵) ∈ ran (𝐹 ↾ 𝐴)) |
6 | df-ima 4651 | . . . . . . . . . 10 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
7 | 6 | eleq2i 2254 | . . . . . . . . 9 ⊢ ((𝐹‘𝐵) ∈ (𝐹 “ 𝐴) ↔ (𝐹‘𝐵) ∈ ran (𝐹 ↾ 𝐴)) |
8 | fvres 5551 | . . . . . . . . . 10 ⊢ (𝐵 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝐵) = (𝐹‘𝐵)) | |
9 | 8 | eleq1d 2256 | . . . . . . . . 9 ⊢ (𝐵 ∈ 𝐴 → (((𝐹 ↾ 𝐴)‘𝐵) ∈ ran (𝐹 ↾ 𝐴) ↔ (𝐹‘𝐵) ∈ ran (𝐹 ↾ 𝐴))) |
10 | 7, 9 | bitr4id 199 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝐴 → ((𝐹‘𝐵) ∈ (𝐹 “ 𝐴) ↔ ((𝐹 ↾ 𝐴)‘𝐵) ∈ ran (𝐹 ↾ 𝐴))) |
11 | 5, 10 | syl5ibrcom 157 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom (𝐹 ↾ 𝐴)) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
12 | 11 | ex 115 | . . . . . 6 ⊢ (Fun 𝐹 → (𝐵 ∈ dom (𝐹 ↾ 𝐴) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
13 | 2, 12 | biimtrrid 153 | . . . . 5 ⊢ (Fun 𝐹 → ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
14 | 13 | expd 258 | . . . 4 ⊢ (Fun 𝐹 → (𝐵 ∈ 𝐴 → (𝐵 ∈ dom 𝐹 → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))))) |
15 | 14 | com12 30 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (Fun 𝐹 → (𝐵 ∈ dom 𝐹 → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))))) |
16 | 15 | impd 254 | . 2 ⊢ (𝐵 ∈ 𝐴 → ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
17 | 16 | pm2.43b 52 | 1 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2158 dom cdm 4638 ran crn 4639 ↾ cres 4640 “ cima 4641 Fun wfun 5222 ‘cfv 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-sbc 2975 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-opab 4077 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-fv 5236 |
This theorem is referenced by: funfvima2 5762 fiintim 6941 caseinl 7103 caseinr 7104 ctssdccl 7123 suplocexprlemdisj 7732 suplocexprlemub 7735 ennnfonelemex 12428 ctinfomlemom 12441 txcnp 14011 |
Copyright terms: Public domain | W3C validator |