ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvima GIF version

Theorem funfvima 5823
Description: A function's value in a preimage belongs to the image. (Contributed by NM, 23-Sep-2003.)
Assertion
Ref Expression
funfvima ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))

Proof of Theorem funfvima
StepHypRef Expression
1 dmres 4985 . . . . . . 7 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
21elin2 3362 . . . . . 6 (𝐵 ∈ dom (𝐹𝐴) ↔ (𝐵𝐴𝐵 ∈ dom 𝐹))
3 funres 5317 . . . . . . . . 9 (Fun 𝐹 → Fun (𝐹𝐴))
4 fvelrn 5718 . . . . . . . . 9 ((Fun (𝐹𝐴) ∧ 𝐵 ∈ dom (𝐹𝐴)) → ((𝐹𝐴)‘𝐵) ∈ ran (𝐹𝐴))
53, 4sylan 283 . . . . . . . 8 ((Fun 𝐹𝐵 ∈ dom (𝐹𝐴)) → ((𝐹𝐴)‘𝐵) ∈ ran (𝐹𝐴))
6 df-ima 4692 . . . . . . . . . 10 (𝐹𝐴) = ran (𝐹𝐴)
76eleq2i 2273 . . . . . . . . 9 ((𝐹𝐵) ∈ (𝐹𝐴) ↔ (𝐹𝐵) ∈ ran (𝐹𝐴))
8 fvres 5607 . . . . . . . . . 10 (𝐵𝐴 → ((𝐹𝐴)‘𝐵) = (𝐹𝐵))
98eleq1d 2275 . . . . . . . . 9 (𝐵𝐴 → (((𝐹𝐴)‘𝐵) ∈ ran (𝐹𝐴) ↔ (𝐹𝐵) ∈ ran (𝐹𝐴)))
107, 9bitr4id 199 . . . . . . . 8 (𝐵𝐴 → ((𝐹𝐵) ∈ (𝐹𝐴) ↔ ((𝐹𝐴)‘𝐵) ∈ ran (𝐹𝐴)))
115, 10syl5ibrcom 157 . . . . . . 7 ((Fun 𝐹𝐵 ∈ dom (𝐹𝐴)) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))
1211ex 115 . . . . . 6 (Fun 𝐹 → (𝐵 ∈ dom (𝐹𝐴) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴))))
132, 12biimtrrid 153 . . . . 5 (Fun 𝐹 → ((𝐵𝐴𝐵 ∈ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴))))
1413expd 258 . . . 4 (Fun 𝐹 → (𝐵𝐴 → (𝐵 ∈ dom 𝐹 → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))))
1514com12 30 . . 3 (𝐵𝐴 → (Fun 𝐹 → (𝐵 ∈ dom 𝐹 → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))))
1615impd 254 . 2 (𝐵𝐴 → ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴))))
1716pm2.43b 52 1 ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2177  dom cdm 4679  ran crn 4680  cres 4681  cima 4682  Fun wfun 5270  cfv 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3000  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284
This theorem is referenced by:  funfvima2  5824  fiintim  7035  caseinl  7200  caseinr  7201  ctssdccl  7220  suplocexprlemdisj  7840  suplocexprlemub  7843  swrdwrdsymbg  11125  ennnfonelemex  12829  ctinfomlemom  12842  txcnp  14787
  Copyright terms: Public domain W3C validator