![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funfvima | GIF version |
Description: A function's value in a preimage belongs to the image. (Contributed by NM, 23-Sep-2003.) |
Ref | Expression |
---|---|
funfvima | ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 4963 | . . . . . . 7 ⊢ dom (𝐹 ↾ 𝐴) = (𝐴 ∩ dom 𝐹) | |
2 | 1 | elin2 3347 | . . . . . 6 ⊢ (𝐵 ∈ dom (𝐹 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ∈ dom 𝐹)) |
3 | funres 5295 | . . . . . . . . 9 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
4 | fvelrn 5689 | . . . . . . . . 9 ⊢ ((Fun (𝐹 ↾ 𝐴) ∧ 𝐵 ∈ dom (𝐹 ↾ 𝐴)) → ((𝐹 ↾ 𝐴)‘𝐵) ∈ ran (𝐹 ↾ 𝐴)) | |
5 | 3, 4 | sylan 283 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom (𝐹 ↾ 𝐴)) → ((𝐹 ↾ 𝐴)‘𝐵) ∈ ran (𝐹 ↾ 𝐴)) |
6 | df-ima 4672 | . . . . . . . . . 10 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
7 | 6 | eleq2i 2260 | . . . . . . . . 9 ⊢ ((𝐹‘𝐵) ∈ (𝐹 “ 𝐴) ↔ (𝐹‘𝐵) ∈ ran (𝐹 ↾ 𝐴)) |
8 | fvres 5578 | . . . . . . . . . 10 ⊢ (𝐵 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝐵) = (𝐹‘𝐵)) | |
9 | 8 | eleq1d 2262 | . . . . . . . . 9 ⊢ (𝐵 ∈ 𝐴 → (((𝐹 ↾ 𝐴)‘𝐵) ∈ ran (𝐹 ↾ 𝐴) ↔ (𝐹‘𝐵) ∈ ran (𝐹 ↾ 𝐴))) |
10 | 7, 9 | bitr4id 199 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝐴 → ((𝐹‘𝐵) ∈ (𝐹 “ 𝐴) ↔ ((𝐹 ↾ 𝐴)‘𝐵) ∈ ran (𝐹 ↾ 𝐴))) |
11 | 5, 10 | syl5ibrcom 157 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom (𝐹 ↾ 𝐴)) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
12 | 11 | ex 115 | . . . . . 6 ⊢ (Fun 𝐹 → (𝐵 ∈ dom (𝐹 ↾ 𝐴) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
13 | 2, 12 | biimtrrid 153 | . . . . 5 ⊢ (Fun 𝐹 → ((𝐵 ∈ 𝐴 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
14 | 13 | expd 258 | . . . 4 ⊢ (Fun 𝐹 → (𝐵 ∈ 𝐴 → (𝐵 ∈ dom 𝐹 → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))))) |
15 | 14 | com12 30 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (Fun 𝐹 → (𝐵 ∈ dom 𝐹 → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))))) |
16 | 15 | impd 254 | . 2 ⊢ (𝐵 ∈ 𝐴 → ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
17 | 16 | pm2.43b 52 | 1 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 dom cdm 4659 ran crn 4660 ↾ cres 4661 “ cima 4662 Fun wfun 5248 ‘cfv 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 |
This theorem is referenced by: funfvima2 5791 fiintim 6985 caseinl 7150 caseinr 7151 ctssdccl 7170 suplocexprlemdisj 7780 suplocexprlemub 7783 ennnfonelemex 12571 ctinfomlemom 12584 txcnp 14439 |
Copyright terms: Public domain | W3C validator |