ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvima GIF version

Theorem funfvima 5601
Description: A function's value in a preimage belongs to the image. (Contributed by NM, 23-Sep-2003.)
Assertion
Ref Expression
funfvima ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))

Proof of Theorem funfvima
StepHypRef Expression
1 dmres 4796 . . . . . . 7 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
21elin2 3228 . . . . . 6 (𝐵 ∈ dom (𝐹𝐴) ↔ (𝐵𝐴𝐵 ∈ dom 𝐹))
3 funres 5120 . . . . . . . . 9 (Fun 𝐹 → Fun (𝐹𝐴))
4 fvelrn 5503 . . . . . . . . 9 ((Fun (𝐹𝐴) ∧ 𝐵 ∈ dom (𝐹𝐴)) → ((𝐹𝐴)‘𝐵) ∈ ran (𝐹𝐴))
53, 4sylan 279 . . . . . . . 8 ((Fun 𝐹𝐵 ∈ dom (𝐹𝐴)) → ((𝐹𝐴)‘𝐵) ∈ ran (𝐹𝐴))
6 fvres 5397 . . . . . . . . . 10 (𝐵𝐴 → ((𝐹𝐴)‘𝐵) = (𝐹𝐵))
76eleq1d 2181 . . . . . . . . 9 (𝐵𝐴 → (((𝐹𝐴)‘𝐵) ∈ ran (𝐹𝐴) ↔ (𝐹𝐵) ∈ ran (𝐹𝐴)))
8 df-ima 4510 . . . . . . . . . 10 (𝐹𝐴) = ran (𝐹𝐴)
98eleq2i 2179 . . . . . . . . 9 ((𝐹𝐵) ∈ (𝐹𝐴) ↔ (𝐹𝐵) ∈ ran (𝐹𝐴))
107, 9syl6rbbr 198 . . . . . . . 8 (𝐵𝐴 → ((𝐹𝐵) ∈ (𝐹𝐴) ↔ ((𝐹𝐴)‘𝐵) ∈ ran (𝐹𝐴)))
115, 10syl5ibrcom 156 . . . . . . 7 ((Fun 𝐹𝐵 ∈ dom (𝐹𝐴)) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))
1211ex 114 . . . . . 6 (Fun 𝐹 → (𝐵 ∈ dom (𝐹𝐴) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴))))
132, 12syl5bir 152 . . . . 5 (Fun 𝐹 → ((𝐵𝐴𝐵 ∈ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴))))
1413expd 256 . . . 4 (Fun 𝐹 → (𝐵𝐴 → (𝐵 ∈ dom 𝐹 → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))))
1514com12 30 . . 3 (𝐵𝐴 → (Fun 𝐹 → (𝐵 ∈ dom 𝐹 → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))))
1615impd 252 . 2 (𝐵𝐴 → ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴))))
1716pm2.43b 52 1 ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1461  dom cdm 4497  ran crn 4498  cres 4499  cima 4500  Fun wfun 5073  cfv 5079
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-sbc 2877  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-fv 5087
This theorem is referenced by:  funfvima2  5602  fiintim  6767  caseinl  6925  caseinr  6926  ctssdccl  6945  ennnfonelemex  11765  ctinfomlemom  11778  txcnp  12275
  Copyright terms: Public domain W3C validator