ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpw2 GIF version

Theorem elpw2 4175
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.)
Hypothesis
Ref Expression
elpw2.1 𝐵 ∈ V
Assertion
Ref Expression
elpw2 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)

Proof of Theorem elpw2
StepHypRef Expression
1 elpw2.1 . 2 𝐵 ∈ V
2 elpw2g 4174 . 2 (𝐵 ∈ V → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
31, 2ax-mp 5 1 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2160  Vcvv 2752  wss 3144  𝒫 cpw 3590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-sep 4136
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-in 3150  df-ss 3157  df-pw 3592
This theorem is referenced by:  elpwi2  4176  axpweq  4189  genpelxp  7539  ltexprlempr  7636  recexprlempr  7660  cauappcvgprlemcl  7681  cauappcvgprlemladd  7686  caucvgprlemcl  7704  caucvgprprlemcl  7732  uzf  9560  ixxf  9927  fzf  10041  cncfval  14511  reldvg  14600  dvfvalap  14602
  Copyright terms: Public domain W3C validator