ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpw2 GIF version

Theorem elpw2 4158
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.)
Hypothesis
Ref Expression
elpw2.1 𝐵 ∈ V
Assertion
Ref Expression
elpw2 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)

Proof of Theorem elpw2
StepHypRef Expression
1 elpw2.1 . 2 𝐵 ∈ V
2 elpw2g 4157 . 2 (𝐵 ∈ V → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
31, 2ax-mp 5 1 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2148  Vcvv 2738  wss 3130  𝒫 cpw 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-sep 4122
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-in 3136  df-ss 3143  df-pw 3578
This theorem is referenced by:  elpwi2  4159  axpweq  4172  genpelxp  7510  ltexprlempr  7607  recexprlempr  7631  cauappcvgprlemcl  7652  cauappcvgprlemladd  7657  caucvgprlemcl  7675  caucvgprprlemcl  7703  uzf  9531  ixxf  9898  fzf  10012  cncfval  14062  reldvg  14151  dvfvalap  14153
  Copyright terms: Public domain W3C validator