ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpw2 GIF version

Theorem elpw2 4141
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.)
Hypothesis
Ref Expression
elpw2.1 𝐵 ∈ V
Assertion
Ref Expression
elpw2 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)

Proof of Theorem elpw2
StepHypRef Expression
1 elpw2.1 . 2 𝐵 ∈ V
2 elpw2g 4140 . 2 (𝐵 ∈ V → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
31, 2ax-mp 5 1 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 2141  Vcvv 2730  wss 3121  𝒫 cpw 3564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sep 4105
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-pw 3566
This theorem is referenced by:  elpwi2  4142  axpweq  4155  genpelxp  7460  ltexprlempr  7557  recexprlempr  7581  cauappcvgprlemcl  7602  cauappcvgprlemladd  7607  caucvgprlemcl  7625  caucvgprprlemcl  7653  uzf  9477  ixxf  9842  fzf  9956  cncfval  13274  reldvg  13363  dvfvalap  13365
  Copyright terms: Public domain W3C validator