Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sspwuni | GIF version |
Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.) |
Ref | Expression |
---|---|
sspwuni | ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2733 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | 1 | elpw 3572 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) |
3 | 2 | ralbii 2476 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
4 | dfss3 3137 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵) | |
5 | unissb 3826 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
6 | 3, 4, 5 | 3bitr4i 211 | 1 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 2141 ∀wral 2448 ⊆ wss 3121 𝒫 cpw 3566 ∪ cuni 3796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 df-uni 3797 |
This theorem is referenced by: pwssb 3958 elpwpw 3959 elpwuni 3962 rintm 3965 dftr4 4092 iotass 5177 tfrlemibfn 6307 tfr1onlembfn 6323 tfrcllembfn 6336 uniixp 6699 fipwssg 6956 unirnioo 9930 restid 12590 topgele 12821 topontopn 12829 unitg 12856 epttop 12884 resttopon 12965 txuni2 13050 txdis 13071 unirnblps 13216 unirnbl 13217 |
Copyright terms: Public domain | W3C validator |