ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sspwuni GIF version

Theorem sspwuni 4002
Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
sspwuni (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)

Proof of Theorem sspwuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 2766 . . . 4 𝑥 ∈ V
21elpw 3612 . . 3 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
32ralbii 2503 . 2 (∀𝑥𝐴 𝑥 ∈ 𝒫 𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
4 dfss3 3173 . 2 (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥𝐴 𝑥 ∈ 𝒫 𝐵)
5 unissb 3870 . 2 ( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
63, 4, 53bitr4i 212 1 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2167  wral 2475  wss 3157  𝒫 cpw 3606   cuni 3840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-in 3163  df-ss 3170  df-pw 3608  df-uni 3841
This theorem is referenced by:  pwssb  4003  elpwpw  4004  elpwuni  4007  rintm  4010  dftr4  4137  iotass  5237  tfrlemibfn  6395  tfr1onlembfn  6411  tfrcllembfn  6424  uniixp  6789  fipwssg  7054  unirnioo  10067  restid  12954  lssintclm  14018  topgele  14373  topontopn  14381  unitg  14406  epttop  14434  resttopon  14515  txuni2  14600  txdis  14621  unirnblps  14766  unirnbl  14767
  Copyright terms: Public domain W3C validator