ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sspwuni GIF version

Theorem sspwuni 3998
Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
sspwuni (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)

Proof of Theorem sspwuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 2763 . . . 4 𝑥 ∈ V
21elpw 3608 . . 3 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
32ralbii 2500 . 2 (∀𝑥𝐴 𝑥 ∈ 𝒫 𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
4 dfss3 3170 . 2 (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥𝐴 𝑥 ∈ 𝒫 𝐵)
5 unissb 3866 . 2 ( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
63, 4, 53bitr4i 212 1 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2164  wral 2472  wss 3154  𝒫 cpw 3602   cuni 3836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-in 3160  df-ss 3167  df-pw 3604  df-uni 3837
This theorem is referenced by:  pwssb  3999  elpwpw  4000  elpwuni  4003  rintm  4006  dftr4  4133  iotass  5233  tfrlemibfn  6383  tfr1onlembfn  6399  tfrcllembfn  6412  uniixp  6777  fipwssg  7040  unirnioo  10042  restid  12864  lssintclm  13883  topgele  14208  topontopn  14216  unitg  14241  epttop  14269  resttopon  14350  txuni2  14435  txdis  14456  unirnblps  14601  unirnbl  14602
  Copyright terms: Public domain W3C validator