![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sspwuni | GIF version |
Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.) |
Ref | Expression |
---|---|
sspwuni | ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2738 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | 1 | elpw 3578 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) |
3 | 2 | ralbii 2481 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
4 | dfss3 3143 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵) | |
5 | unissb 3835 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
6 | 3, 4, 5 | 3bitr4i 212 | 1 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∈ wcel 2146 ∀wral 2453 ⊆ wss 3127 𝒫 cpw 3572 ∪ cuni 3805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-v 2737 df-in 3133 df-ss 3140 df-pw 3574 df-uni 3806 |
This theorem is referenced by: pwssb 3967 elpwpw 3968 elpwuni 3971 rintm 3974 dftr4 4101 iotass 5187 tfrlemibfn 6319 tfr1onlembfn 6335 tfrcllembfn 6348 uniixp 6711 fipwssg 6968 unirnioo 9942 restid 12619 topgele 13078 topontopn 13086 unitg 13113 epttop 13141 resttopon 13222 txuni2 13307 txdis 13328 unirnblps 13473 unirnbl 13474 |
Copyright terms: Public domain | W3C validator |