| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sspwuni | GIF version | ||
| Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.) |
| Ref | Expression |
|---|---|
| sspwuni | ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elpw 3655 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) |
| 3 | 2 | ralbii 2536 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
| 4 | dfss3 3213 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵) | |
| 5 | unissb 3917 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
| 6 | 3, 4, 5 | 3bitr4i 212 | 1 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2200 ∀wral 2508 ⊆ wss 3197 𝒫 cpw 3649 ∪ cuni 3887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 df-uni 3888 |
| This theorem is referenced by: pwssb 4050 elpwpw 4051 elpwuni 4054 rintm 4057 dftr4 4186 iotass 5292 tfrlemibfn 6464 tfr1onlembfn 6480 tfrcllembfn 6493 uniixp 6858 fipwssg 7134 unirnioo 10157 restid 13269 lssintclm 14333 topgele 14688 topontopn 14696 unitg 14721 epttop 14749 resttopon 14830 txuni2 14915 txdis 14936 unirnblps 15081 unirnbl 15082 |
| Copyright terms: Public domain | W3C validator |