ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sspwuni GIF version

Theorem sspwuni 3957
Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
sspwuni (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)

Proof of Theorem sspwuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 2733 . . . 4 𝑥 ∈ V
21elpw 3572 . . 3 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
32ralbii 2476 . 2 (∀𝑥𝐴 𝑥 ∈ 𝒫 𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
4 dfss3 3137 . 2 (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥𝐴 𝑥 ∈ 𝒫 𝐵)
5 unissb 3826 . 2 ( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
63, 4, 53bitr4i 211 1 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 2141  wral 2448  wss 3121  𝒫 cpw 3566   cuni 3796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568  df-uni 3797
This theorem is referenced by:  pwssb  3958  elpwpw  3959  elpwuni  3962  rintm  3965  dftr4  4092  iotass  5177  tfrlemibfn  6307  tfr1onlembfn  6323  tfrcllembfn  6336  uniixp  6699  fipwssg  6956  unirnioo  9930  restid  12590  topgele  12821  topontopn  12829  unitg  12856  epttop  12884  resttopon  12965  txuni2  13050  txdis  13071  unirnblps  13216  unirnbl  13217
  Copyright terms: Public domain W3C validator