ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sspwuni GIF version

Theorem sspwuni 3966
Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
sspwuni (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)

Proof of Theorem sspwuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 2738 . . . 4 𝑥 ∈ V
21elpw 3578 . . 3 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
32ralbii 2481 . 2 (∀𝑥𝐴 𝑥 ∈ 𝒫 𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
4 dfss3 3143 . 2 (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥𝐴 𝑥 ∈ 𝒫 𝐵)
5 unissb 3835 . 2 ( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
63, 4, 53bitr4i 212 1 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2146  wral 2453  wss 3127  𝒫 cpw 3572   cuni 3805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-v 2737  df-in 3133  df-ss 3140  df-pw 3574  df-uni 3806
This theorem is referenced by:  pwssb  3967  elpwpw  3968  elpwuni  3971  rintm  3974  dftr4  4101  iotass  5187  tfrlemibfn  6319  tfr1onlembfn  6335  tfrcllembfn  6348  uniixp  6711  fipwssg  6968  unirnioo  9942  restid  12619  topgele  13078  topontopn  13086  unitg  13113  epttop  13141  resttopon  13222  txuni2  13307  txdis  13328  unirnblps  13473  unirnbl  13474
  Copyright terms: Public domain W3C validator