ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sspwuni GIF version

Theorem sspwuni 4050
Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
sspwuni (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)

Proof of Theorem sspwuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 2802 . . . 4 𝑥 ∈ V
21elpw 3655 . . 3 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
32ralbii 2536 . 2 (∀𝑥𝐴 𝑥 ∈ 𝒫 𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
4 dfss3 3213 . 2 (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥𝐴 𝑥 ∈ 𝒫 𝐵)
5 unissb 3918 . 2 ( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
63, 4, 53bitr4i 212 1 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2200  wral 2508  wss 3197  𝒫 cpw 3649   cuni 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651  df-uni 3889
This theorem is referenced by:  pwssb  4051  elpwpw  4052  elpwuni  4055  rintm  4058  dftr4  4187  iotass  5296  tfrlemibfn  6480  tfr1onlembfn  6496  tfrcllembfn  6509  uniixp  6876  fipwssg  7154  unirnioo  10177  restid  13291  lssintclm  14356  topgele  14711  topontopn  14719  unitg  14744  epttop  14772  resttopon  14853  txuni2  14938  txdis  14959  unirnblps  15104  unirnbl  15105
  Copyright terms: Public domain W3C validator