| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sspwuni | GIF version | ||
| Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.) | 
| Ref | Expression | 
|---|---|
| sspwuni | ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vex 2766 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elpw 3611 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) | 
| 3 | 2 | ralbii 2503 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | 
| 4 | dfss3 3173 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵) | |
| 5 | unissb 3869 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
| 6 | 3, 4, 5 | 3bitr4i 212 | 1 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 𝒫 cpw 3605 ∪ cuni 3839 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-in 3163 df-ss 3170 df-pw 3607 df-uni 3840 | 
| This theorem is referenced by: pwssb 4002 elpwpw 4003 elpwuni 4006 rintm 4009 dftr4 4136 iotass 5236 tfrlemibfn 6386 tfr1onlembfn 6402 tfrcllembfn 6415 uniixp 6780 fipwssg 7045 unirnioo 10048 restid 12921 lssintclm 13940 topgele 14265 topontopn 14273 unitg 14298 epttop 14326 resttopon 14407 txuni2 14492 txdis 14513 unirnblps 14658 unirnbl 14659 | 
| Copyright terms: Public domain | W3C validator |