ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sspwuni GIF version

Theorem sspwuni 4049
Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
sspwuni (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)

Proof of Theorem sspwuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 2802 . . . 4 𝑥 ∈ V
21elpw 3655 . . 3 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
32ralbii 2536 . 2 (∀𝑥𝐴 𝑥 ∈ 𝒫 𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
4 dfss3 3213 . 2 (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥𝐴 𝑥 ∈ 𝒫 𝐵)
5 unissb 3917 . 2 ( 𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
63, 4, 53bitr4i 212 1 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2200  wral 2508  wss 3197  𝒫 cpw 3649   cuni 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651  df-uni 3888
This theorem is referenced by:  pwssb  4050  elpwpw  4051  elpwuni  4054  rintm  4057  dftr4  4186  iotass  5292  tfrlemibfn  6464  tfr1onlembfn  6480  tfrcllembfn  6493  uniixp  6858  fipwssg  7134  unirnioo  10157  restid  13269  lssintclm  14333  topgele  14688  topontopn  14696  unitg  14721  epttop  14749  resttopon  14830  txuni2  14915  txdis  14936  unirnblps  15081  unirnbl  15082
  Copyright terms: Public domain W3C validator