ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elintg GIF version

Theorem elintg 3839
Description: Membership in class intersection, with the sethood requirement expressed as an antecedent. (Contributed by NM, 20-Nov-2003.)
Assertion
Ref Expression
elintg (𝐴𝑉 → (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elintg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2233 . 2 (𝑦 = 𝐴 → (𝑦 𝐵𝐴 𝐵))
2 eleq1 2233 . . 3 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
32ralbidv 2470 . 2 (𝑦 = 𝐴 → (∀𝑥𝐵 𝑦𝑥 ↔ ∀𝑥𝐵 𝐴𝑥))
4 vex 2733 . . 3 𝑦 ∈ V
54elint2 3838 . 2 (𝑦 𝐵 ↔ ∀𝑥𝐵 𝑦𝑥)
61, 3, 5vtoclbg 2791 1 (𝐴𝑉 → (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1348  wcel 2141  wral 2448   cint 3831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-int 3832
This theorem is referenced by:  elinti  3840  elrint  3871  peano2  4579  pitonn  7810  peano1nnnn  7814  peano2nnnn  7815  1nn  8889  peano2nn  8890
  Copyright terms: Public domain W3C validator