| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elintg | GIF version | ||
| Description: Membership in class intersection, with the sethood requirement expressed as an antecedent. (Contributed by NM, 20-Nov-2003.) |
| Ref | Expression |
|---|---|
| elintg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2259 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ ∩ 𝐵 ↔ 𝐴 ∈ ∩ 𝐵)) | |
| 2 | eleq1 2259 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
| 3 | 2 | ralbidv 2497 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥)) |
| 4 | vex 2766 | . . 3 ⊢ 𝑦 ∈ V | |
| 5 | 4 | elint2 3881 | . 2 ⊢ (𝑦 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥) |
| 6 | 1, 3, 5 | vtoclbg 2825 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ∩ cint 3874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-int 3875 |
| This theorem is referenced by: elinti 3883 elrint 3914 peano2 4631 pitonn 7915 peano1nnnn 7919 peano2nnnn 7920 1nn 9001 peano2nn 9002 subgintm 13328 subrngintm 13768 subrgintm 13799 lssintclm 13940 |
| Copyright terms: Public domain | W3C validator |