ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elintg GIF version

Theorem elintg 3930
Description: Membership in class intersection, with the sethood requirement expressed as an antecedent. (Contributed by NM, 20-Nov-2003.)
Assertion
Ref Expression
elintg (𝐴𝑉 → (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elintg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2292 . 2 (𝑦 = 𝐴 → (𝑦 𝐵𝐴 𝐵))
2 eleq1 2292 . . 3 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
32ralbidv 2530 . 2 (𝑦 = 𝐴 → (∀𝑥𝐵 𝑦𝑥 ↔ ∀𝑥𝐵 𝐴𝑥))
4 vex 2802 . . 3 𝑦 ∈ V
54elint2 3929 . 2 (𝑦 𝐵 ↔ ∀𝑥𝐵 𝑦𝑥)
61, 3, 5vtoclbg 2862 1 (𝐴𝑉 → (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wcel 2200  wral 2508   cint 3922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-int 3923
This theorem is referenced by:  elinti  3931  elrint  3962  peano2  4686  pitonn  8031  peano1nnnn  8035  peano2nnnn  8036  1nn  9117  peano2nn  9118  subgintm  13730  subrngintm  14170  subrgintm  14201  lssintclm  14342
  Copyright terms: Public domain W3C validator