![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elintg | GIF version |
Description: Membership in class intersection, with the sethood requirement expressed as an antecedent. (Contributed by NM, 20-Nov-2003.) |
Ref | Expression |
---|---|
elintg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2147 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ ∩ 𝐵 ↔ 𝐴 ∈ ∩ 𝐵)) | |
2 | eleq1 2147 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
3 | 2 | ralbidv 2376 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥)) |
4 | vex 2617 | . . 3 ⊢ 𝑦 ∈ V | |
5 | 4 | elint2 3672 | . 2 ⊢ (𝑦 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥) |
6 | 1, 3, 5 | vtoclbg 2672 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 = wceq 1287 ∈ wcel 1436 ∀wral 2355 ∩ cint 3665 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1379 ax-7 1380 ax-gen 1381 ax-ie1 1425 ax-ie2 1426 ax-8 1438 ax-10 1439 ax-11 1440 ax-i12 1441 ax-bndl 1442 ax-4 1443 ax-17 1462 ax-i9 1466 ax-ial 1470 ax-i5r 1471 ax-ext 2067 |
This theorem depends on definitions: df-bi 115 df-tru 1290 df-nf 1393 df-sb 1690 df-clab 2072 df-cleq 2078 df-clel 2081 df-nfc 2214 df-ral 2360 df-v 2616 df-int 3666 |
This theorem is referenced by: elinti 3674 elrint 3705 peano2 4376 pitonn 7306 peano1nnnn 7310 peano2nnnn 7311 1nn 8345 peano2nn 8346 |
Copyright terms: Public domain | W3C validator |