Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elintg | GIF version |
Description: Membership in class intersection, with the sethood requirement expressed as an antecedent. (Contributed by NM, 20-Nov-2003.) |
Ref | Expression |
---|---|
elintg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2229 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ ∩ 𝐵 ↔ 𝐴 ∈ ∩ 𝐵)) | |
2 | eleq1 2229 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
3 | 2 | ralbidv 2466 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥)) |
4 | vex 2729 | . . 3 ⊢ 𝑦 ∈ V | |
5 | 4 | elint2 3831 | . 2 ⊢ (𝑦 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥) |
6 | 1, 3, 5 | vtoclbg 2787 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ∩ cint 3824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-int 3825 |
This theorem is referenced by: elinti 3833 elrint 3864 peano2 4572 pitonn 7789 peano1nnnn 7793 peano2nnnn 7794 1nn 8868 peano2nn 8869 |
Copyright terms: Public domain | W3C validator |