ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluni2 GIF version

Theorem eluni2 3815
Description: Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999.)
Assertion
Ref Expression
eluni2 (𝐴 𝐵 ↔ ∃𝑥𝐵 𝐴𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eluni2
StepHypRef Expression
1 exancom 1608 . 2 (∃𝑥(𝐴𝑥𝑥𝐵) ↔ ∃𝑥(𝑥𝐵𝐴𝑥))
2 eluni 3814 . 2 (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
3 df-rex 2461 . 2 (∃𝑥𝐵 𝐴𝑥 ↔ ∃𝑥(𝑥𝐵𝐴𝑥))
41, 2, 33bitr4i 212 1 (𝐴 𝐵 ↔ ∃𝑥𝐵 𝐴𝑥)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1492  wcel 2148  wrex 2456   cuni 3811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-uni 3812
This theorem is referenced by:  uni0b  3836  intssunim  3868  iuncom4  3895  inuni  4157  ssorduni  4488  unon  4512  cnvuni  4815  chfnrn  5629  isbasis3g  13631  eltg2b  13639  tgcl  13649  epttop  13675  txuni2  13841
  Copyright terms: Public domain W3C validator