ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluni2 GIF version

Theorem eluni2 3891
Description: Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999.)
Assertion
Ref Expression
eluni2 (𝐴 𝐵 ↔ ∃𝑥𝐵 𝐴𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eluni2
StepHypRef Expression
1 exancom 1654 . 2 (∃𝑥(𝐴𝑥𝑥𝐵) ↔ ∃𝑥(𝑥𝐵𝐴𝑥))
2 eluni 3890 . 2 (𝐴 𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵))
3 df-rex 2514 . 2 (∃𝑥𝐵 𝐴𝑥 ↔ ∃𝑥(𝑥𝐵𝐴𝑥))
41, 2, 33bitr4i 212 1 (𝐴 𝐵 ↔ ∃𝑥𝐵 𝐴𝑥)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1538  wcel 2200  wrex 2509   cuni 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-uni 3888
This theorem is referenced by:  uni0b  3912  intssunim  3944  iuncom4  3971  inuni  4238  ssorduni  4576  unon  4600  cnvuni  4905  chfnrn  5739  zrhval  14566  isbasis3g  14705  eltg2b  14713  tgcl  14723  epttop  14749  txuni2  14915
  Copyright terms: Public domain W3C validator