Step | Hyp | Ref
| Expression |
1 | | ltrelsr 7700 |
. . . 4
⊢
<R ⊆ (R ×
R) |
2 | 1 | brel 4663 |
. . 3
⊢
(0R <R 𝐴 →
(0R ∈ R ∧ 𝐴 ∈ R)) |
3 | 2 | simprd 113 |
. 2
⊢
(0R <R 𝐴 → 𝐴 ∈ R) |
4 | | df-nr 7689 |
. . 3
⊢
R = ((P × P) /
~R ) |
5 | | breq2 3993 |
. . . 4
⊢
([〈𝑦, 𝑧〉]
~R = 𝐴 → (0R
<R [〈𝑦, 𝑧〉] ~R ↔
0R <R 𝐴)) |
6 | | oveq1 5860 |
. . . . . . 7
⊢
([〈𝑦, 𝑧〉]
~R = 𝐴 → ([〈𝑦, 𝑧〉] ~R
·R 𝑥) = (𝐴 ·R 𝑥)) |
7 | 6 | eqeq1d 2179 |
. . . . . 6
⊢
([〈𝑦, 𝑧〉]
~R = 𝐴 → (([〈𝑦, 𝑧〉] ~R
·R 𝑥) = 1R ↔ (𝐴
·R 𝑥) =
1R)) |
8 | 7 | anbi2d 461 |
. . . . 5
⊢
([〈𝑦, 𝑧〉]
~R = 𝐴 → ((0R
<R 𝑥 ∧ ([〈𝑦, 𝑧〉] ~R
·R 𝑥) = 1R) ↔
(0R <R 𝑥 ∧ (𝐴 ·R 𝑥) =
1R))) |
9 | 8 | rexbidv 2471 |
. . . 4
⊢
([〈𝑦, 𝑧〉]
~R = 𝐴 → (∃𝑥 ∈ R
(0R <R 𝑥 ∧ ([〈𝑦, 𝑧〉] ~R
·R 𝑥) = 1R) ↔
∃𝑥 ∈
R (0R <R
𝑥 ∧ (𝐴 ·R 𝑥) =
1R))) |
10 | 5, 9 | imbi12d 233 |
. . 3
⊢
([〈𝑦, 𝑧〉]
~R = 𝐴 → ((0R
<R [〈𝑦, 𝑧〉] ~R →
∃𝑥 ∈
R (0R <R
𝑥 ∧ ([〈𝑦, 𝑧〉] ~R
·R 𝑥) = 1R)) ↔
(0R <R 𝐴 → ∃𝑥 ∈ R
(0R <R 𝑥 ∧ (𝐴 ·R 𝑥) =
1R)))) |
11 | | gt0srpr 7710 |
. . . . 5
⊢
(0R <R [〈𝑦, 𝑧〉] ~R ↔
𝑧<P 𝑦) |
12 | | ltexpri 7575 |
. . . . 5
⊢ (𝑧<P
𝑦 → ∃𝑤 ∈ P (𝑧 +P
𝑤) = 𝑦) |
13 | 11, 12 | sylbi 120 |
. . . 4
⊢
(0R <R [〈𝑦, 𝑧〉] ~R →
∃𝑤 ∈
P (𝑧
+P 𝑤) = 𝑦) |
14 | | recexpr 7600 |
. . . . . . 7
⊢ (𝑤 ∈ P →
∃𝑣 ∈
P (𝑤
·P 𝑣) =
1P) |
15 | 14 | adantl 275 |
. . . . . 6
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ 𝑤 ∈
P) → ∃𝑣 ∈ P (𝑤 ·P 𝑣) =
1P) |
16 | | 1pr 7516 |
. . . . . . . . . . . . . 14
⊢
1P ∈ P |
17 | | addclpr 7499 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 ∈ P ∧
1P ∈ P) → (𝑣 +P
1P) ∈ P) |
18 | 16, 17 | mpan2 423 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ P →
(𝑣
+P 1P) ∈
P) |
19 | | enrex 7699 |
. . . . . . . . . . . . . 14
⊢
~R ∈ V |
20 | 19, 4 | ecopqsi 6568 |
. . . . . . . . . . . . 13
⊢ (((𝑣 +P
1P) ∈ P ∧
1P ∈ P) → [〈(𝑣 +P
1P), 1P〉]
~R ∈ R) |
21 | 18, 16, 20 | sylancl 411 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ P →
[〈(𝑣
+P 1P),
1P〉] ~R ∈
R) |
22 | 21 | adantl 275 |
. . . . . . . . . . 11
⊢ ((𝑤 ∈ P ∧
𝑣 ∈ P)
→ [〈(𝑣
+P 1P),
1P〉] ~R ∈
R) |
23 | 22 | ad2antlr 486 |
. . . . . . . . . 10
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ ((𝑤 ·P 𝑣) = 1P
∧ (𝑧
+P 𝑤) = 𝑦)) → [〈(𝑣 +P
1P), 1P〉]
~R ∈ R) |
24 | | simprr 527 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → 𝑣 ∈ P) |
25 | 24 | adantr 274 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ ((𝑤 ·P 𝑣) = 1P
∧ (𝑧
+P 𝑤) = 𝑦)) → 𝑣 ∈ P) |
26 | | ltaddpr 7559 |
. . . . . . . . . . . . . 14
⊢
((1P ∈ P ∧ 𝑣 ∈ P) →
1P<P
(1P +P 𝑣)) |
27 | 16, 26 | mpan 422 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ P →
1P<P
(1P +P 𝑣)) |
28 | | addcomprg 7540 |
. . . . . . . . . . . . . 14
⊢
((1P ∈ P ∧ 𝑣 ∈ P) →
(1P +P 𝑣) = (𝑣 +P
1P)) |
29 | 16, 28 | mpan 422 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ P →
(1P +P 𝑣) = (𝑣 +P
1P)) |
30 | 27, 29 | breqtrd 4015 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ P →
1P<P (𝑣 +P
1P)) |
31 | | gt0srpr 7710 |
. . . . . . . . . . . 12
⊢
(0R <R
[〈(𝑣
+P 1P),
1P〉] ~R ↔
1P<P (𝑣 +P
1P)) |
32 | 30, 31 | sylibr 133 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ P →
0R <R [〈(𝑣 +P
1P), 1P〉]
~R ) |
33 | 25, 32 | syl 14 |
. . . . . . . . . 10
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ ((𝑤 ·P 𝑣) = 1P
∧ (𝑧
+P 𝑤) = 𝑦)) → 0R
<R [〈(𝑣 +P
1P), 1P〉]
~R ) |
34 | 18, 16 | jctir 311 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 ∈ P →
((𝑣
+P 1P) ∈ P
∧ 1P ∈ P)) |
35 | 34 | anim2i 340 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ 𝑣 ∈
P) → ((𝑦
∈ P ∧ 𝑧 ∈ P) ∧ ((𝑣 +P
1P) ∈ P ∧
1P ∈ P))) |
36 | 35 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ 𝑣 ∈
P) ∧ ((𝑤
·P 𝑣) = 1P ∧ (𝑧 +P
𝑤) = 𝑦)) → ((𝑦 ∈ P ∧ 𝑧 ∈ P) ∧
((𝑣
+P 1P) ∈ P
∧ 1P ∈ P))) |
37 | | mulsrpr 7708 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ ((𝑣
+P 1P) ∈ P
∧ 1P ∈ P)) → ([〈𝑦, 𝑧〉] ~R
·R [〈(𝑣 +P
1P), 1P〉]
~R ) = [〈((𝑦 ·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)), ((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P)))〉] ~R
) |
38 | 36, 37 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ 𝑣 ∈
P) ∧ ((𝑤
·P 𝑣) = 1P ∧ (𝑧 +P
𝑤) = 𝑦)) → ([〈𝑦, 𝑧〉] ~R
·R [〈(𝑣 +P
1P), 1P〉]
~R ) = [〈((𝑦 ·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)), ((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P)))〉] ~R
) |
39 | 38 | adantlrl 479 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ ((𝑤 ·P 𝑣) = 1P
∧ (𝑧
+P 𝑤) = 𝑦)) → ([〈𝑦, 𝑧〉] ~R
·R [〈(𝑣 +P
1P), 1P〉]
~R ) = [〈((𝑦 ·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)), ((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P)))〉] ~R
) |
40 | | oveq1 5860 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑧 +P
𝑤) = 𝑦 → ((𝑧 +P 𝑤)
·P 𝑣) = (𝑦 ·P 𝑣)) |
41 | 40 | eqcomd 2176 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 +P
𝑤) = 𝑦 → (𝑦 ·P 𝑣) = ((𝑧 +P 𝑤)
·P 𝑣)) |
42 | 41 | ad2antll 488 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ ((𝑤 ·P 𝑣) = 1P
∧ (𝑧
+P 𝑤) = 𝑦)) → (𝑦 ·P 𝑣) = ((𝑧 +P 𝑤)
·P 𝑣)) |
43 | | mulcomprg 7542 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑓 ∈ P ∧
ℎ ∈ P)
→ (𝑓
·P ℎ) = (ℎ ·P 𝑓)) |
44 | 43 | 3adant2 1011 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P
∧ ℎ ∈
P) → (𝑓
·P ℎ) = (ℎ ·P 𝑓)) |
45 | | mulcomprg 7542 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑔 ∈ P ∧
ℎ ∈ P)
→ (𝑔
·P ℎ) = (ℎ ·P 𝑔)) |
46 | 45 | 3adant1 1010 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P
∧ ℎ ∈
P) → (𝑔
·P ℎ) = (ℎ ·P 𝑔)) |
47 | 44, 46 | oveq12d 5871 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P
∧ ℎ ∈
P) → ((𝑓
·P ℎ) +P (𝑔
·P ℎ)) = ((ℎ ·P 𝑓) +P
(ℎ
·P 𝑔))) |
48 | | distrprg 7550 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((ℎ ∈ P ∧
𝑓 ∈ P
∧ 𝑔 ∈
P) → (ℎ
·P (𝑓 +P 𝑔)) = ((ℎ ·P 𝑓) +P
(ℎ
·P 𝑔))) |
49 | 48 | 3coml 1205 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P
∧ ℎ ∈
P) → (ℎ
·P (𝑓 +P 𝑔)) = ((ℎ ·P 𝑓) +P
(ℎ
·P 𝑔))) |
50 | | simp3 994 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P
∧ ℎ ∈
P) → ℎ
∈ P) |
51 | | addclpr 7499 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P)
→ (𝑓
+P 𝑔) ∈ P) |
52 | 51 | 3adant3 1012 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P
∧ ℎ ∈
P) → (𝑓
+P 𝑔) ∈ P) |
53 | | mulcomprg 7542 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((ℎ ∈ P ∧
(𝑓
+P 𝑔) ∈ P) → (ℎ
·P (𝑓 +P 𝑔)) = ((𝑓 +P 𝑔)
·P ℎ)) |
54 | 50, 52, 53 | syl2anc 409 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P
∧ ℎ ∈
P) → (ℎ
·P (𝑓 +P 𝑔)) = ((𝑓 +P 𝑔)
·P ℎ)) |
55 | 47, 49, 54 | 3eqtr2rd 2210 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P
∧ ℎ ∈
P) → ((𝑓
+P 𝑔) ·P ℎ) = ((𝑓 ·P ℎ) +P
(𝑔
·P ℎ))) |
56 | 55 | adantl 275 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P ∧
ℎ ∈ P))
→ ((𝑓
+P 𝑔) ·P ℎ) = ((𝑓 ·P ℎ) +P
(𝑔
·P ℎ))) |
57 | | simplr 525 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → 𝑧 ∈ P) |
58 | | simprl 526 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → 𝑤 ∈ P) |
59 | 56, 57, 58, 24 | caovdird 6031 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → ((𝑧 +P 𝑤)
·P 𝑣) = ((𝑧 ·P 𝑣) +P
(𝑤
·P 𝑣))) |
60 | | oveq2 5861 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑤
·P 𝑣) = 1P →
((𝑧
·P 𝑣) +P (𝑤
·P 𝑣)) = ((𝑧 ·P 𝑣) +P
1P)) |
61 | 59, 60 | sylan9eq 2223 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ (𝑤 ·P 𝑣) = 1P)
→ ((𝑧
+P 𝑤) ·P 𝑣) = ((𝑧 ·P 𝑣) +P
1P)) |
62 | 61 | adantrr 476 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ ((𝑤 ·P 𝑣) = 1P
∧ (𝑧
+P 𝑤) = 𝑦)) → ((𝑧 +P 𝑤)
·P 𝑣) = ((𝑧 ·P 𝑣) +P
1P)) |
63 | 42, 62 | eqtrd 2203 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ ((𝑤 ·P 𝑣) = 1P
∧ (𝑧
+P 𝑤) = 𝑦)) → (𝑦 ·P 𝑣) = ((𝑧 ·P 𝑣) +P
1P)) |
64 | 63 | oveq1d 5868 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ ((𝑤 ·P 𝑣) = 1P
∧ (𝑧
+P 𝑤) = 𝑦)) → ((𝑦 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) = (((𝑧 ·P 𝑣) +P
1P) +P ((𝑦 ·P
1P) +P (𝑧 ·P
1P)))) |
65 | | mulclpr 7534 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ P ∧
𝑣 ∈ P)
→ (𝑧
·P 𝑣) ∈ P) |
66 | 57, 24, 65 | syl2anc 409 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → (𝑧 ·P 𝑣) ∈
P) |
67 | 16 | a1i 9 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → 1P ∈
P) |
68 | | simpll 524 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → 𝑦 ∈ P) |
69 | | mulclpr 7534 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑦 ∈ P ∧
1P ∈ P) → (𝑦 ·P
1P) ∈ P) |
70 | 68, 16, 69 | sylancl 411 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → (𝑦 ·P
1P) ∈ P) |
71 | | mulclpr 7534 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑧 ∈ P ∧
1P ∈ P) → (𝑧 ·P
1P) ∈ P) |
72 | 57, 16, 71 | sylancl 411 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → (𝑧 ·P
1P) ∈ P) |
73 | | addclpr 7499 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑦
·P 1P) ∈
P ∧ (𝑧
·P 1P) ∈
P) → ((𝑦
·P 1P)
+P (𝑧 ·P
1P)) ∈ P) |
74 | 70, 72, 73 | syl2anc 409 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → ((𝑦 ·P
1P) +P (𝑧 ·P
1P)) ∈ P) |
75 | | addcomprg 7540 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P)
→ (𝑓
+P 𝑔) = (𝑔 +P 𝑓)) |
76 | 75 | adantl 275 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P)) →
(𝑓
+P 𝑔) = (𝑔 +P 𝑓)) |
77 | | addassprg 7541 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 ∈ P ∧
𝑔 ∈ P
∧ ℎ ∈
P) → ((𝑓
+P 𝑔) +P ℎ) = (𝑓 +P (𝑔 +P
ℎ))) |
78 | 77 | adantl 275 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ (𝑓 ∈ P ∧ 𝑔 ∈ P ∧
ℎ ∈ P))
→ ((𝑓
+P 𝑔) +P ℎ) = (𝑓 +P (𝑔 +P
ℎ))) |
79 | 66, 67, 74, 76, 78 | caov32d 6033 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → (((𝑧 ·P 𝑣) +P
1P) +P ((𝑦 ·P
1P) +P (𝑧 ·P
1P))) = (((𝑧 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) +P
1P)) |
80 | 79 | adantr 274 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ ((𝑤 ·P 𝑣) = 1P
∧ (𝑧
+P 𝑤) = 𝑦)) → (((𝑧 ·P 𝑣) +P
1P) +P ((𝑦 ·P
1P) +P (𝑧 ·P
1P))) = (((𝑧 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) +P
1P)) |
81 | 64, 80 | eqtrd 2203 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ ((𝑤 ·P 𝑣) = 1P
∧ (𝑧
+P 𝑤) = 𝑦)) → ((𝑦 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) = (((𝑧 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) +P
1P)) |
82 | 81 | oveq1d 5868 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ ((𝑤 ·P 𝑣) = 1P
∧ (𝑧
+P 𝑤) = 𝑦)) → (((𝑦 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) +P
1P) = ((((𝑧 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) +P
1P) +P
1P)) |
83 | | addclpr 7499 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑧
·P 𝑣) ∈ P ∧ ((𝑦
·P 1P)
+P (𝑧 ·P
1P)) ∈ P) → ((𝑧
·P 𝑣) +P ((𝑦
·P 1P)
+P (𝑧 ·P
1P))) ∈ P) |
84 | 66, 74, 83 | syl2anc 409 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → ((𝑧 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) ∈ P) |
85 | 84 | adantr 274 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ ((𝑤 ·P 𝑣) = 1P
∧ (𝑧
+P 𝑤) = 𝑦)) → ((𝑧 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) ∈ P) |
86 | 16 | a1i 9 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ ((𝑤 ·P 𝑣) = 1P
∧ (𝑧
+P 𝑤) = 𝑦)) → 1P ∈
P) |
87 | | addassprg 7541 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑧
·P 𝑣) +P ((𝑦
·P 1P)
+P (𝑧 ·P
1P))) ∈ P ∧
1P ∈ P ∧
1P ∈ P) → ((((𝑧
·P 𝑣) +P ((𝑦
·P 1P)
+P (𝑧 ·P
1P))) +P
1P) +P
1P) = (((𝑧 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) +P
(1P +P
1P))) |
88 | 85, 86, 86, 87 | syl3anc 1233 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ ((𝑤 ·P 𝑣) = 1P
∧ (𝑧
+P 𝑤) = 𝑦)) → ((((𝑧 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) +P
1P) +P
1P) = (((𝑧 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) +P
(1P +P
1P))) |
89 | 82, 88 | eqtrd 2203 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ ((𝑤 ·P 𝑣) = 1P
∧ (𝑧
+P 𝑤) = 𝑦)) → (((𝑦 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) +P
1P) = (((𝑧 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) +P
(1P +P
1P))) |
90 | | distrprg 7550 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ P ∧
𝑣 ∈ P
∧ 1P ∈ P) → (𝑦
·P (𝑣 +P
1P)) = ((𝑦 ·P 𝑣) +P
(𝑦
·P
1P))) |
91 | 68, 24, 67, 90 | syl3anc 1233 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → (𝑦 ·P (𝑣 +P
1P)) = ((𝑦 ·P 𝑣) +P
(𝑦
·P
1P))) |
92 | 91 | oveq1d 5868 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → ((𝑦 ·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)) = (((𝑦 ·P 𝑣) +P
(𝑦
·P 1P))
+P (𝑧 ·P
1P))) |
93 | | mulclpr 7534 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ P ∧
𝑣 ∈ P)
→ (𝑦
·P 𝑣) ∈ P) |
94 | 68, 24, 93 | syl2anc 409 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → (𝑦 ·P 𝑣) ∈
P) |
95 | | addassprg 7541 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦
·P 𝑣) ∈ P ∧ (𝑦
·P 1P) ∈
P ∧ (𝑧
·P 1P) ∈
P) → (((𝑦 ·P 𝑣) +P
(𝑦
·P 1P))
+P (𝑧 ·P
1P)) = ((𝑦 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P)))) |
96 | 94, 70, 72, 95 | syl3anc 1233 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → (((𝑦 ·P 𝑣) +P
(𝑦
·P 1P))
+P (𝑧 ·P
1P)) = ((𝑦 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P)))) |
97 | 92, 96 | eqtrd 2203 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → ((𝑦 ·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)) = ((𝑦 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P)))) |
98 | 97 | oveq1d 5868 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → (((𝑦 ·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)) +P
1P) = (((𝑦 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) +P
1P)) |
99 | 98 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ ((𝑤 ·P 𝑣) = 1P
∧ (𝑧
+P 𝑤) = 𝑦)) → (((𝑦 ·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)) +P
1P) = (((𝑦 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) +P
1P)) |
100 | | distrprg 7550 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ P ∧
𝑣 ∈ P
∧ 1P ∈ P) → (𝑧
·P (𝑣 +P
1P)) = ((𝑧 ·P 𝑣) +P
(𝑧
·P
1P))) |
101 | 57, 24, 67, 100 | syl3anc 1233 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → (𝑧 ·P (𝑣 +P
1P)) = ((𝑧 ·P 𝑣) +P
(𝑧
·P
1P))) |
102 | 101 | oveq2d 5869 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → ((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P))) = ((𝑦 ·P
1P) +P ((𝑧 ·P 𝑣) +P
(𝑧
·P
1P)))) |
103 | 70, 66, 72, 76, 78 | caov12d 6034 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → ((𝑦 ·P
1P) +P ((𝑧 ·P 𝑣) +P
(𝑧
·P 1P))) = ((𝑧
·P 𝑣) +P ((𝑦
·P 1P)
+P (𝑧 ·P
1P)))) |
104 | 102, 103 | eqtrd 2203 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → ((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P))) = ((𝑧 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P)))) |
105 | 104 | oveq1d 5868 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → (((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P))) +P
(1P +P
1P)) = (((𝑧 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) +P
(1P +P
1P))) |
106 | 105 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ ((𝑤 ·P 𝑣) = 1P
∧ (𝑧
+P 𝑤) = 𝑦)) → (((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P))) +P
(1P +P
1P)) = (((𝑧 ·P 𝑣) +P
((𝑦
·P 1P)
+P (𝑧 ·P
1P))) +P
(1P +P
1P))) |
107 | 89, 99, 106 | 3eqtr4d 2213 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ ((𝑤 ·P 𝑣) = 1P
∧ (𝑧
+P 𝑤) = 𝑦)) → (((𝑦 ·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)) +P
1P) = (((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P))) +P
(1P +P
1P))) |
108 | 24, 16, 17 | sylancl 411 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → (𝑣 +P
1P) ∈ P) |
109 | | mulclpr 7534 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ P ∧
(𝑣
+P 1P) ∈
P) → (𝑦
·P (𝑣 +P
1P)) ∈ P) |
110 | 68, 108, 109 | syl2anc 409 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → (𝑦 ·P (𝑣 +P
1P)) ∈ P) |
111 | | addclpr 7499 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦
·P (𝑣 +P
1P)) ∈ P ∧ (𝑧 ·P
1P) ∈ P) → ((𝑦
·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)) ∈ P) |
112 | 110, 72, 111 | syl2anc 409 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → ((𝑦 ·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)) ∈ P) |
113 | 104, 84 | eqeltrd 2247 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → ((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P))) ∈ P) |
114 | | addclpr 7499 |
. . . . . . . . . . . . . . . . 17
⊢
((1P ∈ P ∧
1P ∈ P) →
(1P +P
1P) ∈ P) |
115 | 16, 16, 114 | mp2an 424 |
. . . . . . . . . . . . . . . 16
⊢
(1P +P
1P) ∈ P |
116 | 115 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → (1P
+P 1P) ∈
P) |
117 | | enreceq 7698 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑦
·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)) ∈ P ∧ ((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P))) ∈ P) ∧
((1P +P
1P) ∈ P ∧
1P ∈ P)) → ([〈((𝑦
·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)), ((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P)))〉] ~R =
[〈(1P +P
1P), 1P〉]
~R ↔ (((𝑦 ·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)) +P
1P) = (((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P))) +P
(1P +P
1P)))) |
118 | 112, 113,
116, 67, 117 | syl22anc 1234 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → ([〈((𝑦 ·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)), ((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P)))〉] ~R =
[〈(1P +P
1P), 1P〉]
~R ↔ (((𝑦 ·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)) +P
1P) = (((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P))) +P
(1P +P
1P)))) |
119 | 118 | adantr 274 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ ((𝑤 ·P 𝑣) = 1P
∧ (𝑧
+P 𝑤) = 𝑦)) → ([〈((𝑦 ·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)), ((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P)))〉] ~R =
[〈(1P +P
1P), 1P〉]
~R ↔ (((𝑦 ·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)) +P
1P) = (((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P))) +P
(1P +P
1P)))) |
120 | 107, 119 | mpbird 166 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ ((𝑤 ·P 𝑣) = 1P
∧ (𝑧
+P 𝑤) = 𝑦)) → [〈((𝑦 ·P (𝑣 +P
1P)) +P (𝑧 ·P
1P)), ((𝑦 ·P
1P) +P (𝑧 ·P (𝑣 +P
1P)))〉] ~R =
[〈(1P +P
1P), 1P〉]
~R ) |
121 | 39, 120 | eqtrd 2203 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ ((𝑤 ·P 𝑣) = 1P
∧ (𝑧
+P 𝑤) = 𝑦)) → ([〈𝑦, 𝑧〉] ~R
·R [〈(𝑣 +P
1P), 1P〉]
~R ) = [〈(1P
+P 1P),
1P〉] ~R
) |
122 | | df-1r 7694 |
. . . . . . . . . . 11
⊢
1R = [〈(1P
+P 1P),
1P〉] ~R |
123 | 121, 122 | eqtr4di 2221 |
. . . . . . . . . 10
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ ((𝑤 ·P 𝑣) = 1P
∧ (𝑧
+P 𝑤) = 𝑦)) → ([〈𝑦, 𝑧〉] ~R
·R [〈(𝑣 +P
1P), 1P〉]
~R ) = 1R) |
124 | | breq2 3993 |
. . . . . . . . . . . 12
⊢ (𝑥 = [〈(𝑣 +P
1P), 1P〉]
~R → (0R
<R 𝑥 ↔ 0R
<R [〈(𝑣 +P
1P), 1P〉]
~R )) |
125 | | oveq2 5861 |
. . . . . . . . . . . . 13
⊢ (𝑥 = [〈(𝑣 +P
1P), 1P〉]
~R → ([〈𝑦, 𝑧〉] ~R
·R 𝑥) = ([〈𝑦, 𝑧〉] ~R
·R [〈(𝑣 +P
1P), 1P〉]
~R )) |
126 | 125 | eqeq1d 2179 |
. . . . . . . . . . . 12
⊢ (𝑥 = [〈(𝑣 +P
1P), 1P〉]
~R → (([〈𝑦, 𝑧〉] ~R
·R 𝑥) = 1R ↔
([〈𝑦, 𝑧〉]
~R ·R [〈(𝑣 +P
1P), 1P〉]
~R ) = 1R)) |
127 | 124, 126 | anbi12d 470 |
. . . . . . . . . . 11
⊢ (𝑥 = [〈(𝑣 +P
1P), 1P〉]
~R → ((0R
<R 𝑥 ∧ ([〈𝑦, 𝑧〉] ~R
·R 𝑥) = 1R) ↔
(0R <R [〈(𝑣 +P
1P), 1P〉]
~R ∧ ([〈𝑦, 𝑧〉] ~R
·R [〈(𝑣 +P
1P), 1P〉]
~R ) = 1R))) |
128 | 127 | rspcev 2834 |
. . . . . . . . . 10
⊢
(([〈(𝑣
+P 1P),
1P〉] ~R ∈
R ∧ (0R
<R [〈(𝑣 +P
1P), 1P〉]
~R ∧ ([〈𝑦, 𝑧〉] ~R
·R [〈(𝑣 +P
1P), 1P〉]
~R ) = 1R)) →
∃𝑥 ∈
R (0R <R
𝑥 ∧ ([〈𝑦, 𝑧〉] ~R
·R 𝑥) =
1R)) |
129 | 23, 33, 123, 128 | syl12anc 1231 |
. . . . . . . . 9
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) ∧ ((𝑤 ·P 𝑣) = 1P
∧ (𝑧
+P 𝑤) = 𝑦)) → ∃𝑥 ∈ R
(0R <R 𝑥 ∧ ([〈𝑦, 𝑧〉] ~R
·R 𝑥) =
1R)) |
130 | 129 | exp32 363 |
. . . . . . . 8
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ (𝑤 ∈
P ∧ 𝑣
∈ P)) → ((𝑤 ·P 𝑣) = 1P
→ ((𝑧
+P 𝑤) = 𝑦 → ∃𝑥 ∈ R
(0R <R 𝑥 ∧ ([〈𝑦, 𝑧〉] ~R
·R 𝑥) =
1R)))) |
131 | 130 | anassrs 398 |
. . . . . . 7
⊢ ((((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ 𝑤 ∈
P) ∧ 𝑣
∈ P) → ((𝑤 ·P 𝑣) = 1P
→ ((𝑧
+P 𝑤) = 𝑦 → ∃𝑥 ∈ R
(0R <R 𝑥 ∧ ([〈𝑦, 𝑧〉] ~R
·R 𝑥) =
1R)))) |
132 | 131 | rexlimdva 2587 |
. . . . . 6
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ 𝑤 ∈
P) → (∃𝑣 ∈ P (𝑤 ·P 𝑣) = 1P
→ ((𝑧
+P 𝑤) = 𝑦 → ∃𝑥 ∈ R
(0R <R 𝑥 ∧ ([〈𝑦, 𝑧〉] ~R
·R 𝑥) =
1R)))) |
133 | 15, 132 | mpd 13 |
. . . . 5
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ 𝑤 ∈
P) → ((𝑧
+P 𝑤) = 𝑦 → ∃𝑥 ∈ R
(0R <R 𝑥 ∧ ([〈𝑦, 𝑧〉] ~R
·R 𝑥) =
1R))) |
134 | 133 | rexlimdva 2587 |
. . . 4
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ (∃𝑤 ∈
P (𝑧
+P 𝑤) = 𝑦 → ∃𝑥 ∈ R
(0R <R 𝑥 ∧ ([〈𝑦, 𝑧〉] ~R
·R 𝑥) =
1R))) |
135 | 13, 134 | syl5 32 |
. . 3
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ (0R <R [〈𝑦, 𝑧〉] ~R →
∃𝑥 ∈
R (0R <R
𝑥 ∧ ([〈𝑦, 𝑧〉] ~R
·R 𝑥) =
1R))) |
136 | 4, 10, 135 | ecoptocl 6600 |
. 2
⊢ (𝐴 ∈ R →
(0R <R 𝐴 → ∃𝑥 ∈ R
(0R <R 𝑥 ∧ (𝐴 ·R 𝑥) =
1R))) |
137 | 3, 136 | mpcom 36 |
1
⊢
(0R <R 𝐴 → ∃𝑥 ∈ R
(0R <R 𝑥 ∧ (𝐴 ·R 𝑥) =
1R)) |