ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexgt0sr GIF version

Theorem recexgt0sr 7605
Description: The reciprocal of a positive signed real exists and is positive. (Contributed by Jim Kingdon, 6-Feb-2020.)
Assertion
Ref Expression
recexgt0sr (0R <R 𝐴 → ∃𝑥R (0R <R 𝑥 ∧ (𝐴 ·R 𝑥) = 1R))
Distinct variable group:   𝑥,𝐴

Proof of Theorem recexgt0sr
Dummy variables 𝑦 𝑧 𝑤 𝑣 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 7570 . . . 4 <R ⊆ (R × R)
21brel 4599 . . 3 (0R <R 𝐴 → (0RR𝐴R))
32simprd 113 . 2 (0R <R 𝐴𝐴R)
4 df-nr 7559 . . 3 R = ((P × P) / ~R )
5 breq2 3941 . . . 4 ([⟨𝑦, 𝑧⟩] ~R = 𝐴 → (0R <R [⟨𝑦, 𝑧⟩] ~R ↔ 0R <R 𝐴))
6 oveq1 5789 . . . . . . 7 ([⟨𝑦, 𝑧⟩] ~R = 𝐴 → ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = (𝐴 ·R 𝑥))
76eqeq1d 2149 . . . . . 6 ([⟨𝑦, 𝑧⟩] ~R = 𝐴 → (([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R ↔ (𝐴 ·R 𝑥) = 1R))
87anbi2d 460 . . . . 5 ([⟨𝑦, 𝑧⟩] ~R = 𝐴 → ((0R <R 𝑥 ∧ ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R) ↔ (0R <R 𝑥 ∧ (𝐴 ·R 𝑥) = 1R)))
98rexbidv 2439 . . . 4 ([⟨𝑦, 𝑧⟩] ~R = 𝐴 → (∃𝑥R (0R <R 𝑥 ∧ ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R) ↔ ∃𝑥R (0R <R 𝑥 ∧ (𝐴 ·R 𝑥) = 1R)))
105, 9imbi12d 233 . . 3 ([⟨𝑦, 𝑧⟩] ~R = 𝐴 → ((0R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥R (0R <R 𝑥 ∧ ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R)) ↔ (0R <R 𝐴 → ∃𝑥R (0R <R 𝑥 ∧ (𝐴 ·R 𝑥) = 1R))))
11 gt0srpr 7580 . . . . 5 (0R <R [⟨𝑦, 𝑧⟩] ~R𝑧<P 𝑦)
12 ltexpri 7445 . . . . 5 (𝑧<P 𝑦 → ∃𝑤P (𝑧 +P 𝑤) = 𝑦)
1311, 12sylbi 120 . . . 4 (0R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑤P (𝑧 +P 𝑤) = 𝑦)
14 recexpr 7470 . . . . . . 7 (𝑤P → ∃𝑣P (𝑤 ·P 𝑣) = 1P)
1514adantl 275 . . . . . 6 (((𝑦P𝑧P) ∧ 𝑤P) → ∃𝑣P (𝑤 ·P 𝑣) = 1P)
16 1pr 7386 . . . . . . . . . . . . . 14 1PP
17 addclpr 7369 . . . . . . . . . . . . . 14 ((𝑣P ∧ 1PP) → (𝑣 +P 1P) ∈ P)
1816, 17mpan2 422 . . . . . . . . . . . . 13 (𝑣P → (𝑣 +P 1P) ∈ P)
19 enrex 7569 . . . . . . . . . . . . . 14 ~R ∈ V
2019, 4ecopqsi 6492 . . . . . . . . . . . . 13 (((𝑣 +P 1P) ∈ P ∧ 1PP) → [⟨(𝑣 +P 1P), 1P⟩] ~RR)
2118, 16, 20sylancl 410 . . . . . . . . . . . 12 (𝑣P → [⟨(𝑣 +P 1P), 1P⟩] ~RR)
2221adantl 275 . . . . . . . . . . 11 ((𝑤P𝑣P) → [⟨(𝑣 +P 1P), 1P⟩] ~RR)
2322ad2antlr 481 . . . . . . . . . 10 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → [⟨(𝑣 +P 1P), 1P⟩] ~RR)
24 simprr 522 . . . . . . . . . . . 12 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → 𝑣P)
2524adantr 274 . . . . . . . . . . 11 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → 𝑣P)
26 ltaddpr 7429 . . . . . . . . . . . . . 14 ((1PP𝑣P) → 1P<P (1P +P 𝑣))
2716, 26mpan 421 . . . . . . . . . . . . 13 (𝑣P → 1P<P (1P +P 𝑣))
28 addcomprg 7410 . . . . . . . . . . . . . 14 ((1PP𝑣P) → (1P +P 𝑣) = (𝑣 +P 1P))
2916, 28mpan 421 . . . . . . . . . . . . 13 (𝑣P → (1P +P 𝑣) = (𝑣 +P 1P))
3027, 29breqtrd 3962 . . . . . . . . . . . 12 (𝑣P → 1P<P (𝑣 +P 1P))
31 gt0srpr 7580 . . . . . . . . . . . 12 (0R <R [⟨(𝑣 +P 1P), 1P⟩] ~R ↔ 1P<P (𝑣 +P 1P))
3230, 31sylibr 133 . . . . . . . . . . 11 (𝑣P → 0R <R [⟨(𝑣 +P 1P), 1P⟩] ~R )
3325, 32syl 14 . . . . . . . . . 10 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → 0R <R [⟨(𝑣 +P 1P), 1P⟩] ~R )
3418, 16jctir 311 . . . . . . . . . . . . . . . 16 (𝑣P → ((𝑣 +P 1P) ∈ P ∧ 1PP))
3534anim2i 340 . . . . . . . . . . . . . . 15 (((𝑦P𝑧P) ∧ 𝑣P) → ((𝑦P𝑧P) ∧ ((𝑣 +P 1P) ∈ P ∧ 1PP)))
3635adantr 274 . . . . . . . . . . . . . 14 ((((𝑦P𝑧P) ∧ 𝑣P) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → ((𝑦P𝑧P) ∧ ((𝑣 +P 1P) ∈ P ∧ 1PP)))
37 mulsrpr 7578 . . . . . . . . . . . . . 14 (((𝑦P𝑧P) ∧ ((𝑣 +P 1P) ∈ P ∧ 1PP)) → ([⟨𝑦, 𝑧⟩] ~R ·R [⟨(𝑣 +P 1P), 1P⟩] ~R ) = [⟨((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)), ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P)))⟩] ~R )
3836, 37syl 14 . . . . . . . . . . . . 13 ((((𝑦P𝑧P) ∧ 𝑣P) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → ([⟨𝑦, 𝑧⟩] ~R ·R [⟨(𝑣 +P 1P), 1P⟩] ~R ) = [⟨((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)), ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P)))⟩] ~R )
3938adantlrl 474 . . . . . . . . . . . 12 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → ([⟨𝑦, 𝑧⟩] ~R ·R [⟨(𝑣 +P 1P), 1P⟩] ~R ) = [⟨((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)), ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P)))⟩] ~R )
40 oveq1 5789 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 +P 𝑤) = 𝑦 → ((𝑧 +P 𝑤) ·P 𝑣) = (𝑦 ·P 𝑣))
4140eqcomd 2146 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 +P 𝑤) = 𝑦 → (𝑦 ·P 𝑣) = ((𝑧 +P 𝑤) ·P 𝑣))
4241ad2antll 483 . . . . . . . . . . . . . . . . . . 19 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → (𝑦 ·P 𝑣) = ((𝑧 +P 𝑤) ·P 𝑣))
43 mulcomprg 7412 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓PP) → (𝑓 ·P ) = ( ·P 𝑓))
44433adant2 1001 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓P𝑔PP) → (𝑓 ·P ) = ( ·P 𝑓))
45 mulcomprg 7412 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑔PP) → (𝑔 ·P ) = ( ·P 𝑔))
46453adant1 1000 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓P𝑔PP) → (𝑔 ·P ) = ( ·P 𝑔))
4744, 46oveq12d 5800 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓P𝑔PP) → ((𝑓 ·P ) +P (𝑔 ·P )) = (( ·P 𝑓) +P ( ·P 𝑔)))
48 distrprg 7420 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((P𝑓P𝑔P) → ( ·P (𝑓 +P 𝑔)) = (( ·P 𝑓) +P ( ·P 𝑔)))
49483coml 1189 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓P𝑔PP) → ( ·P (𝑓 +P 𝑔)) = (( ·P 𝑓) +P ( ·P 𝑔)))
50 simp3 984 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓P𝑔PP) → P)
51 addclpr 7369 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑓P𝑔P) → (𝑓 +P 𝑔) ∈ P)
52513adant3 1002 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓P𝑔PP) → (𝑓 +P 𝑔) ∈ P)
53 mulcomprg 7412 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((P ∧ (𝑓 +P 𝑔) ∈ P) → ( ·P (𝑓 +P 𝑔)) = ((𝑓 +P 𝑔) ·P ))
5450, 52, 53syl2anc 409 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓P𝑔PP) → ( ·P (𝑓 +P 𝑔)) = ((𝑓 +P 𝑔) ·P ))
5547, 49, 543eqtr2rd 2180 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓P𝑔PP) → ((𝑓 +P 𝑔) ·P ) = ((𝑓 ·P ) +P (𝑔 ·P )))
5655adantl 275 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ (𝑓P𝑔PP)) → ((𝑓 +P 𝑔) ·P ) = ((𝑓 ·P ) +P (𝑔 ·P )))
57 simplr 520 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → 𝑧P)
58 simprl 521 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → 𝑤P)
5956, 57, 58, 24caovdird 5957 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → ((𝑧 +P 𝑤) ·P 𝑣) = ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑣)))
60 oveq2 5790 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤 ·P 𝑣) = 1P → ((𝑧 ·P 𝑣) +P (𝑤 ·P 𝑣)) = ((𝑧 ·P 𝑣) +P 1P))
6159, 60sylan9eq 2193 . . . . . . . . . . . . . . . . . . . 20 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ (𝑤 ·P 𝑣) = 1P) → ((𝑧 +P 𝑤) ·P 𝑣) = ((𝑧 ·P 𝑣) +P 1P))
6261adantrr 471 . . . . . . . . . . . . . . . . . . 19 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → ((𝑧 +P 𝑤) ·P 𝑣) = ((𝑧 ·P 𝑣) +P 1P))
6342, 62eqtrd 2173 . . . . . . . . . . . . . . . . . 18 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → (𝑦 ·P 𝑣) = ((𝑧 ·P 𝑣) +P 1P))
6463oveq1d 5797 . . . . . . . . . . . . . . . . 17 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → ((𝑦 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) = (((𝑧 ·P 𝑣) +P 1P) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))))
65 mulclpr 7404 . . . . . . . . . . . . . . . . . . . 20 ((𝑧P𝑣P) → (𝑧 ·P 𝑣) ∈ P)
6657, 24, 65syl2anc 409 . . . . . . . . . . . . . . . . . . 19 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → (𝑧 ·P 𝑣) ∈ P)
6716a1i 9 . . . . . . . . . . . . . . . . . . 19 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → 1PP)
68 simpll 519 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → 𝑦P)
69 mulclpr 7404 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦P ∧ 1PP) → (𝑦 ·P 1P) ∈ P)
7068, 16, 69sylancl 410 . . . . . . . . . . . . . . . . . . . 20 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → (𝑦 ·P 1P) ∈ P)
71 mulclpr 7404 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧P ∧ 1PP) → (𝑧 ·P 1P) ∈ P)
7257, 16, 71sylancl 410 . . . . . . . . . . . . . . . . . . . 20 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → (𝑧 ·P 1P) ∈ P)
73 addclpr 7369 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ·P 1P) ∈ P ∧ (𝑧 ·P 1P) ∈ P) → ((𝑦 ·P 1P) +P (𝑧 ·P 1P)) ∈ P)
7470, 72, 73syl2anc 409 . . . . . . . . . . . . . . . . . . 19 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → ((𝑦 ·P 1P) +P (𝑧 ·P 1P)) ∈ P)
75 addcomprg 7410 . . . . . . . . . . . . . . . . . . . 20 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
7675adantl 275 . . . . . . . . . . . . . . . . . . 19 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
77 addassprg 7411 . . . . . . . . . . . . . . . . . . . 20 ((𝑓P𝑔PP) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
7877adantl 275 . . . . . . . . . . . . . . . . . . 19 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ (𝑓P𝑔PP)) → ((𝑓 +P 𝑔) +P ) = (𝑓 +P (𝑔 +P )))
7966, 67, 74, 76, 78caov32d 5959 . . . . . . . . . . . . . . . . . 18 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → (((𝑧 ·P 𝑣) +P 1P) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) = (((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P 1P))
8079adantr 274 . . . . . . . . . . . . . . . . 17 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → (((𝑧 ·P 𝑣) +P 1P) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) = (((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P 1P))
8164, 80eqtrd 2173 . . . . . . . . . . . . . . . 16 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → ((𝑦 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) = (((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P 1P))
8281oveq1d 5797 . . . . . . . . . . . . . . 15 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → (((𝑦 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P 1P) = ((((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P 1P) +P 1P))
83 addclpr 7369 . . . . . . . . . . . . . . . . . 18 (((𝑧 ·P 𝑣) ∈ P ∧ ((𝑦 ·P 1P) +P (𝑧 ·P 1P)) ∈ P) → ((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) ∈ P)
8466, 74, 83syl2anc 409 . . . . . . . . . . . . . . . . 17 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → ((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) ∈ P)
8584adantr 274 . . . . . . . . . . . . . . . 16 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → ((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) ∈ P)
8616a1i 9 . . . . . . . . . . . . . . . 16 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → 1PP)
87 addassprg 7411 . . . . . . . . . . . . . . . 16 ((((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) ∈ P ∧ 1PP ∧ 1PP) → ((((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P 1P) +P 1P) = (((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P (1P +P 1P)))
8885, 86, 86, 87syl3anc 1217 . . . . . . . . . . . . . . 15 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → ((((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P 1P) +P 1P) = (((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P (1P +P 1P)))
8982, 88eqtrd 2173 . . . . . . . . . . . . . 14 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → (((𝑦 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P 1P) = (((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P (1P +P 1P)))
90 distrprg 7420 . . . . . . . . . . . . . . . . . . 19 ((𝑦P𝑣P ∧ 1PP) → (𝑦 ·P (𝑣 +P 1P)) = ((𝑦 ·P 𝑣) +P (𝑦 ·P 1P)))
9168, 24, 67, 90syl3anc 1217 . . . . . . . . . . . . . . . . . 18 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → (𝑦 ·P (𝑣 +P 1P)) = ((𝑦 ·P 𝑣) +P (𝑦 ·P 1P)))
9291oveq1d 5797 . . . . . . . . . . . . . . . . 17 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → ((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) = (((𝑦 ·P 𝑣) +P (𝑦 ·P 1P)) +P (𝑧 ·P 1P)))
93 mulclpr 7404 . . . . . . . . . . . . . . . . . . 19 ((𝑦P𝑣P) → (𝑦 ·P 𝑣) ∈ P)
9468, 24, 93syl2anc 409 . . . . . . . . . . . . . . . . . 18 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → (𝑦 ·P 𝑣) ∈ P)
95 addassprg 7411 . . . . . . . . . . . . . . . . . 18 (((𝑦 ·P 𝑣) ∈ P ∧ (𝑦 ·P 1P) ∈ P ∧ (𝑧 ·P 1P) ∈ P) → (((𝑦 ·P 𝑣) +P (𝑦 ·P 1P)) +P (𝑧 ·P 1P)) = ((𝑦 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))))
9694, 70, 72, 95syl3anc 1217 . . . . . . . . . . . . . . . . 17 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → (((𝑦 ·P 𝑣) +P (𝑦 ·P 1P)) +P (𝑧 ·P 1P)) = ((𝑦 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))))
9792, 96eqtrd 2173 . . . . . . . . . . . . . . . 16 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → ((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) = ((𝑦 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))))
9897oveq1d 5797 . . . . . . . . . . . . . . 15 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → (((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) +P 1P) = (((𝑦 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P 1P))
9998adantr 274 . . . . . . . . . . . . . 14 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → (((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) +P 1P) = (((𝑦 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P 1P))
100 distrprg 7420 . . . . . . . . . . . . . . . . . . 19 ((𝑧P𝑣P ∧ 1PP) → (𝑧 ·P (𝑣 +P 1P)) = ((𝑧 ·P 𝑣) +P (𝑧 ·P 1P)))
10157, 24, 67, 100syl3anc 1217 . . . . . . . . . . . . . . . . . 18 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → (𝑧 ·P (𝑣 +P 1P)) = ((𝑧 ·P 𝑣) +P (𝑧 ·P 1P)))
102101oveq2d 5798 . . . . . . . . . . . . . . . . 17 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) = ((𝑦 ·P 1P) +P ((𝑧 ·P 𝑣) +P (𝑧 ·P 1P))))
10370, 66, 72, 76, 78caov12d 5960 . . . . . . . . . . . . . . . . 17 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → ((𝑦 ·P 1P) +P ((𝑧 ·P 𝑣) +P (𝑧 ·P 1P))) = ((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))))
104102, 103eqtrd 2173 . . . . . . . . . . . . . . . 16 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) = ((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))))
105104oveq1d 5797 . . . . . . . . . . . . . . 15 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → (((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) +P (1P +P 1P)) = (((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P (1P +P 1P)))
106105adantr 274 . . . . . . . . . . . . . 14 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → (((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) +P (1P +P 1P)) = (((𝑧 ·P 𝑣) +P ((𝑦 ·P 1P) +P (𝑧 ·P 1P))) +P (1P +P 1P)))
10789, 99, 1063eqtr4d 2183 . . . . . . . . . . . . 13 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → (((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) +P 1P) = (((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) +P (1P +P 1P)))
10824, 16, 17sylancl 410 . . . . . . . . . . . . . . . . 17 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → (𝑣 +P 1P) ∈ P)
109 mulclpr 7404 . . . . . . . . . . . . . . . . 17 ((𝑦P ∧ (𝑣 +P 1P) ∈ P) → (𝑦 ·P (𝑣 +P 1P)) ∈ P)
11068, 108, 109syl2anc 409 . . . . . . . . . . . . . . . 16 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → (𝑦 ·P (𝑣 +P 1P)) ∈ P)
111 addclpr 7369 . . . . . . . . . . . . . . . 16 (((𝑦 ·P (𝑣 +P 1P)) ∈ P ∧ (𝑧 ·P 1P) ∈ P) → ((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) ∈ P)
112110, 72, 111syl2anc 409 . . . . . . . . . . . . . . 15 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → ((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) ∈ P)
113104, 84eqeltrd 2217 . . . . . . . . . . . . . . 15 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) ∈ P)
114 addclpr 7369 . . . . . . . . . . . . . . . . 17 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
11516, 16, 114mp2an 423 . . . . . . . . . . . . . . . 16 (1P +P 1P) ∈ P
116115a1i 9 . . . . . . . . . . . . . . 15 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → (1P +P 1P) ∈ P)
117 enreceq 7568 . . . . . . . . . . . . . . 15 (((((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) ∈ P ∧ ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) ∈ P) ∧ ((1P +P 1P) ∈ P ∧ 1PP)) → ([⟨((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)), ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P)))⟩] ~R = [⟨(1P +P 1P), 1P⟩] ~R ↔ (((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) +P 1P) = (((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) +P (1P +P 1P))))
118112, 113, 116, 67, 117syl22anc 1218 . . . . . . . . . . . . . 14 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → ([⟨((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)), ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P)))⟩] ~R = [⟨(1P +P 1P), 1P⟩] ~R ↔ (((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) +P 1P) = (((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) +P (1P +P 1P))))
119118adantr 274 . . . . . . . . . . . . 13 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → ([⟨((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)), ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P)))⟩] ~R = [⟨(1P +P 1P), 1P⟩] ~R ↔ (((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)) +P 1P) = (((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P))) +P (1P +P 1P))))
120107, 119mpbird 166 . . . . . . . . . . . 12 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → [⟨((𝑦 ·P (𝑣 +P 1P)) +P (𝑧 ·P 1P)), ((𝑦 ·P 1P) +P (𝑧 ·P (𝑣 +P 1P)))⟩] ~R = [⟨(1P +P 1P), 1P⟩] ~R )
12139, 120eqtrd 2173 . . . . . . . . . . 11 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → ([⟨𝑦, 𝑧⟩] ~R ·R [⟨(𝑣 +P 1P), 1P⟩] ~R ) = [⟨(1P +P 1P), 1P⟩] ~R )
122 df-1r 7564 . . . . . . . . . . 11 1R = [⟨(1P +P 1P), 1P⟩] ~R
123121, 122eqtr4di 2191 . . . . . . . . . 10 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → ([⟨𝑦, 𝑧⟩] ~R ·R [⟨(𝑣 +P 1P), 1P⟩] ~R ) = 1R)
124 breq2 3941 . . . . . . . . . . . 12 (𝑥 = [⟨(𝑣 +P 1P), 1P⟩] ~R → (0R <R 𝑥 ↔ 0R <R [⟨(𝑣 +P 1P), 1P⟩] ~R ))
125 oveq2 5790 . . . . . . . . . . . . 13 (𝑥 = [⟨(𝑣 +P 1P), 1P⟩] ~R → ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = ([⟨𝑦, 𝑧⟩] ~R ·R [⟨(𝑣 +P 1P), 1P⟩] ~R ))
126125eqeq1d 2149 . . . . . . . . . . . 12 (𝑥 = [⟨(𝑣 +P 1P), 1P⟩] ~R → (([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R ↔ ([⟨𝑦, 𝑧⟩] ~R ·R [⟨(𝑣 +P 1P), 1P⟩] ~R ) = 1R))
127124, 126anbi12d 465 . . . . . . . . . . 11 (𝑥 = [⟨(𝑣 +P 1P), 1P⟩] ~R → ((0R <R 𝑥 ∧ ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R) ↔ (0R <R [⟨(𝑣 +P 1P), 1P⟩] ~R ∧ ([⟨𝑦, 𝑧⟩] ~R ·R [⟨(𝑣 +P 1P), 1P⟩] ~R ) = 1R)))
128127rspcev 2793 . . . . . . . . . 10 (([⟨(𝑣 +P 1P), 1P⟩] ~RR ∧ (0R <R [⟨(𝑣 +P 1P), 1P⟩] ~R ∧ ([⟨𝑦, 𝑧⟩] ~R ·R [⟨(𝑣 +P 1P), 1P⟩] ~R ) = 1R)) → ∃𝑥R (0R <R 𝑥 ∧ ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R))
12923, 33, 123, 128syl12anc 1215 . . . . . . . . 9 ((((𝑦P𝑧P) ∧ (𝑤P𝑣P)) ∧ ((𝑤 ·P 𝑣) = 1P ∧ (𝑧 +P 𝑤) = 𝑦)) → ∃𝑥R (0R <R 𝑥 ∧ ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R))
130129exp32 363 . . . . . . . 8 (((𝑦P𝑧P) ∧ (𝑤P𝑣P)) → ((𝑤 ·P 𝑣) = 1P → ((𝑧 +P 𝑤) = 𝑦 → ∃𝑥R (0R <R 𝑥 ∧ ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R))))
131130anassrs 398 . . . . . . 7 ((((𝑦P𝑧P) ∧ 𝑤P) ∧ 𝑣P) → ((𝑤 ·P 𝑣) = 1P → ((𝑧 +P 𝑤) = 𝑦 → ∃𝑥R (0R <R 𝑥 ∧ ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R))))
132131rexlimdva 2552 . . . . . 6 (((𝑦P𝑧P) ∧ 𝑤P) → (∃𝑣P (𝑤 ·P 𝑣) = 1P → ((𝑧 +P 𝑤) = 𝑦 → ∃𝑥R (0R <R 𝑥 ∧ ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R))))
13315, 132mpd 13 . . . . 5 (((𝑦P𝑧P) ∧ 𝑤P) → ((𝑧 +P 𝑤) = 𝑦 → ∃𝑥R (0R <R 𝑥 ∧ ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R)))
134133rexlimdva 2552 . . . 4 ((𝑦P𝑧P) → (∃𝑤P (𝑧 +P 𝑤) = 𝑦 → ∃𝑥R (0R <R 𝑥 ∧ ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R)))
13513, 134syl5 32 . . 3 ((𝑦P𝑧P) → (0R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥R (0R <R 𝑥 ∧ ([⟨𝑦, 𝑧⟩] ~R ·R 𝑥) = 1R)))
1364, 10, 135ecoptocl 6524 . 2 (𝐴R → (0R <R 𝐴 → ∃𝑥R (0R <R 𝑥 ∧ (𝐴 ·R 𝑥) = 1R)))
1373, 136mpcom 36 1 (0R <R 𝐴 → ∃𝑥R (0R <R 𝑥 ∧ (𝐴 ·R 𝑥) = 1R))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481  wrex 2418  cop 3535   class class class wbr 3937  (class class class)co 5782  [cec 6435  Pcnp 7123  1Pc1p 7124   +P cpp 7125   ·P cmp 7126  <P cltp 7127   ~R cer 7128  Rcnr 7129  0Rc0r 7130  1Rc1r 7131   ·R cmr 7134   <R cltr 7135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-i1p 7299  df-iplp 7300  df-imp 7301  df-iltp 7302  df-enr 7558  df-nr 7559  df-mr 7561  df-ltr 7562  df-0r 7563  df-1r 7564
This theorem is referenced by:  recexsrlem  7606  axprecex  7712
  Copyright terms: Public domain W3C validator