Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovg GIF version

Theorem ovg 5917
 Description: The value of an operation class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
ovg.1 (𝑥 = 𝐴 → (𝜑𝜓))
ovg.2 (𝑦 = 𝐵 → (𝜓𝜒))
ovg.3 (𝑧 = 𝐶 → (𝜒𝜃))
ovg.4 ((𝜏 ∧ (𝑥𝑅𝑦𝑆)) → ∃!𝑧𝜑)
ovg.5 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
Assertion
Ref Expression
ovg ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → ((𝐴𝐹𝐵) = 𝐶𝜃))
Distinct variable groups:   𝜓,𝑥   𝜒,𝑥,𝑦   𝜃,𝑥,𝑦,𝑧   𝜏,𝑥,𝑦   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑦,𝑧)   𝜒(𝑧)   𝜏(𝑧)   𝐷(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem ovg
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 df-ov 5785 . . . . 5 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 ovg.5 . . . . . 6 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
32fveq1i 5430 . . . . 5 (𝐹‘⟨𝐴, 𝐵⟩) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩)
41, 3eqtri 2161 . . . 4 (𝐴𝐹𝐵) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩)
54eqeq1i 2148 . . 3 ((𝐴𝐹𝐵) = 𝐶 ↔ ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶)
6 eqeq2 2150 . . . . . . . . . 10 (𝑐 = 𝐶 → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝑐 ↔ ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶))
7 opeq2 3714 . . . . . . . . . . 11 (𝑐 = 𝐶 → ⟨⟨𝐴, 𝐵⟩, 𝑐⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩)
87eleq1d 2209 . . . . . . . . . 10 (𝑐 = 𝐶 → (⟨⟨𝐴, 𝐵⟩, 𝑐⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}))
96, 8bibi12d 234 . . . . . . . . 9 (𝑐 = 𝐶 → ((({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝑐 ↔ ⟨⟨𝐴, 𝐵⟩, 𝑐⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}) ↔ (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)})))
109imbi2d 229 . . . . . . . 8 (𝑐 = 𝐶 → (((𝜏 ∧ (𝐴𝑅𝐵𝑆)) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝑐 ↔ ⟨⟨𝐴, 𝐵⟩, 𝑐⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)})) ↔ ((𝜏 ∧ (𝐴𝑅𝐵𝑆)) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}))))
11 ovg.4 . . . . . . . . . . . 12 ((𝜏 ∧ (𝑥𝑅𝑦𝑆)) → ∃!𝑧𝜑)
1211ex 114 . . . . . . . . . . 11 (𝜏 → ((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑))
1312alrimivv 1848 . . . . . . . . . 10 (𝜏 → ∀𝑥𝑦((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑))
14 fnoprabg 5880 . . . . . . . . . 10 (∀𝑥𝑦((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)})
1513, 14syl 14 . . . . . . . . 9 (𝜏 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)})
16 eleq1 2203 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (𝑥𝑅𝐴𝑅))
1716anbi1d 461 . . . . . . . . . . 11 (𝑥 = 𝐴 → ((𝑥𝑅𝑦𝑆) ↔ (𝐴𝑅𝑦𝑆)))
18 eleq1 2203 . . . . . . . . . . . 12 (𝑦 = 𝐵 → (𝑦𝑆𝐵𝑆))
1918anbi2d 460 . . . . . . . . . . 11 (𝑦 = 𝐵 → ((𝐴𝑅𝑦𝑆) ↔ (𝐴𝑅𝐵𝑆)))
2017, 19opelopabg 4198 . . . . . . . . . 10 ((𝐴𝑅𝐵𝑆) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)} ↔ (𝐴𝑅𝐵𝑆)))
2120ibir 176 . . . . . . . . 9 ((𝐴𝑅𝐵𝑆) → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)})
22 fnopfvb 5471 . . . . . . . . 9 (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)} ∧ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)}) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝑐 ↔ ⟨⟨𝐴, 𝐵⟩, 𝑐⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}))
2315, 21, 22syl2an 287 . . . . . . . 8 ((𝜏 ∧ (𝐴𝑅𝐵𝑆)) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝑐 ↔ ⟨⟨𝐴, 𝐵⟩, 𝑐⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}))
2410, 23vtoclg 2749 . . . . . . 7 (𝐶𝐷 → ((𝜏 ∧ (𝐴𝑅𝐵𝑆)) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)})))
2524com12 30 . . . . . 6 ((𝜏 ∧ (𝐴𝑅𝐵𝑆)) → (𝐶𝐷 → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)})))
2625exp32 363 . . . . 5 (𝜏 → (𝐴𝑅 → (𝐵𝑆 → (𝐶𝐷 → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)})))))
27263imp2 1201 . . . 4 ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}))
28 ovg.1 . . . . . . 7 (𝑥 = 𝐴 → (𝜑𝜓))
2917, 28anbi12d 465 . . . . . 6 (𝑥 = 𝐴 → (((𝑥𝑅𝑦𝑆) ∧ 𝜑) ↔ ((𝐴𝑅𝑦𝑆) ∧ 𝜓)))
30 ovg.2 . . . . . . 7 (𝑦 = 𝐵 → (𝜓𝜒))
3119, 30anbi12d 465 . . . . . 6 (𝑦 = 𝐵 → (((𝐴𝑅𝑦𝑆) ∧ 𝜓) ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜒)))
32 ovg.3 . . . . . . 7 (𝑧 = 𝐶 → (𝜒𝜃))
3332anbi2d 460 . . . . . 6 (𝑧 = 𝐶 → (((𝐴𝑅𝐵𝑆) ∧ 𝜒) ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
3429, 31, 33eloprabg 5867 . . . . 5 ((𝐴𝑅𝐵𝑆𝐶𝐷) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
3534adantl 275 . . . 4 ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
3627, 35bitrd 187 . . 3 ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
375, 36syl5bb 191 . 2 ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → ((𝐴𝐹𝐵) = 𝐶 ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
38 biidd 171 . . . . 5 ((𝐴𝑅𝐵𝑆) → (((𝐴𝑅𝐵𝑆) ∧ 𝜃) ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
3938bianabs 601 . . . 4 ((𝐴𝑅𝐵𝑆) → (((𝐴𝑅𝐵𝑆) ∧ 𝜃) ↔ 𝜃))
40393adant3 1002 . . 3 ((𝐴𝑅𝐵𝑆𝐶𝐷) → (((𝐴𝑅𝐵𝑆) ∧ 𝜃) ↔ 𝜃))
4140adantl 275 . 2 ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → (((𝐴𝑅𝐵𝑆) ∧ 𝜃) ↔ 𝜃))
4237, 41bitrd 187 1 ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → ((𝐴𝐹𝐵) = 𝐶𝜃))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 963  ∀wal 1330   = wceq 1332   ∈ wcel 1481  ∃!weu 2000  ⟨cop 3535  {copab 3996   Fn wfn 5126  ‘cfv 5131  (class class class)co 5782  {coprab 5783 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fn 5134  df-fv 5139  df-ov 5785  df-oprab 5786 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator