ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovg GIF version

Theorem ovg 6135
Description: The value of an operation class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
ovg.1 (𝑥 = 𝐴 → (𝜑𝜓))
ovg.2 (𝑦 = 𝐵 → (𝜓𝜒))
ovg.3 (𝑧 = 𝐶 → (𝜒𝜃))
ovg.4 ((𝜏 ∧ (𝑥𝑅𝑦𝑆)) → ∃!𝑧𝜑)
ovg.5 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
Assertion
Ref Expression
ovg ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → ((𝐴𝐹𝐵) = 𝐶𝜃))
Distinct variable groups:   𝜓,𝑥   𝜒,𝑥,𝑦   𝜃,𝑥,𝑦,𝑧   𝜏,𝑥,𝑦   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑦,𝑧)   𝜒(𝑧)   𝜏(𝑧)   𝐷(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem ovg
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 df-ov 5997 . . . . 5 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 ovg.5 . . . . . 6 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
32fveq1i 5624 . . . . 5 (𝐹‘⟨𝐴, 𝐵⟩) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩)
41, 3eqtri 2250 . . . 4 (𝐴𝐹𝐵) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩)
54eqeq1i 2237 . . 3 ((𝐴𝐹𝐵) = 𝐶 ↔ ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶)
6 eqeq2 2239 . . . . . . . . . 10 (𝑐 = 𝐶 → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝑐 ↔ ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶))
7 opeq2 3857 . . . . . . . . . . 11 (𝑐 = 𝐶 → ⟨⟨𝐴, 𝐵⟩, 𝑐⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶⟩)
87eleq1d 2298 . . . . . . . . . 10 (𝑐 = 𝐶 → (⟨⟨𝐴, 𝐵⟩, 𝑐⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}))
96, 8bibi12d 235 . . . . . . . . 9 (𝑐 = 𝐶 → ((({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝑐 ↔ ⟨⟨𝐴, 𝐵⟩, 𝑐⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}) ↔ (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)})))
109imbi2d 230 . . . . . . . 8 (𝑐 = 𝐶 → (((𝜏 ∧ (𝐴𝑅𝐵𝑆)) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝑐 ↔ ⟨⟨𝐴, 𝐵⟩, 𝑐⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)})) ↔ ((𝜏 ∧ (𝐴𝑅𝐵𝑆)) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}))))
11 ovg.4 . . . . . . . . . . . 12 ((𝜏 ∧ (𝑥𝑅𝑦𝑆)) → ∃!𝑧𝜑)
1211ex 115 . . . . . . . . . . 11 (𝜏 → ((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑))
1312alrimivv 1921 . . . . . . . . . 10 (𝜏 → ∀𝑥𝑦((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑))
14 fnoprabg 6096 . . . . . . . . . 10 (∀𝑥𝑦((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)})
1513, 14syl 14 . . . . . . . . 9 (𝜏 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)})
16 eleq1 2292 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (𝑥𝑅𝐴𝑅))
1716anbi1d 465 . . . . . . . . . . 11 (𝑥 = 𝐴 → ((𝑥𝑅𝑦𝑆) ↔ (𝐴𝑅𝑦𝑆)))
18 eleq1 2292 . . . . . . . . . . . 12 (𝑦 = 𝐵 → (𝑦𝑆𝐵𝑆))
1918anbi2d 464 . . . . . . . . . . 11 (𝑦 = 𝐵 → ((𝐴𝑅𝑦𝑆) ↔ (𝐴𝑅𝐵𝑆)))
2017, 19opelopabg 4355 . . . . . . . . . 10 ((𝐴𝑅𝐵𝑆) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)} ↔ (𝐴𝑅𝐵𝑆)))
2120ibir 177 . . . . . . . . 9 ((𝐴𝑅𝐵𝑆) → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)})
22 fnopfvb 5667 . . . . . . . . 9 (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)} ∧ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)}) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝑐 ↔ ⟨⟨𝐴, 𝐵⟩, 𝑐⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}))
2315, 21, 22syl2an 289 . . . . . . . 8 ((𝜏 ∧ (𝐴𝑅𝐵𝑆)) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝑐 ↔ ⟨⟨𝐴, 𝐵⟩, 𝑐⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}))
2410, 23vtoclg 2861 . . . . . . 7 (𝐶𝐷 → ((𝜏 ∧ (𝐴𝑅𝐵𝑆)) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)})))
2524com12 30 . . . . . 6 ((𝜏 ∧ (𝐴𝑅𝐵𝑆)) → (𝐶𝐷 → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)})))
2625exp32 365 . . . . 5 (𝜏 → (𝐴𝑅 → (𝐵𝑆 → (𝐶𝐷 → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)})))))
27263imp2 1246 . . . 4 ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}))
28 ovg.1 . . . . . . 7 (𝑥 = 𝐴 → (𝜑𝜓))
2917, 28anbi12d 473 . . . . . 6 (𝑥 = 𝐴 → (((𝑥𝑅𝑦𝑆) ∧ 𝜑) ↔ ((𝐴𝑅𝑦𝑆) ∧ 𝜓)))
30 ovg.2 . . . . . . 7 (𝑦 = 𝐵 → (𝜓𝜒))
3119, 30anbi12d 473 . . . . . 6 (𝑦 = 𝐵 → (((𝐴𝑅𝑦𝑆) ∧ 𝜓) ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜒)))
32 ovg.3 . . . . . . 7 (𝑧 = 𝐶 → (𝜒𝜃))
3332anbi2d 464 . . . . . 6 (𝑧 = 𝐶 → (((𝐴𝑅𝐵𝑆) ∧ 𝜒) ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
3429, 31, 33eloprabg 6083 . . . . 5 ((𝐴𝑅𝐵𝑆𝐶𝐷) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
3534adantl 277 . . . 4 ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
3627, 35bitrd 188 . . 3 ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
375, 36bitrid 192 . 2 ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → ((𝐴𝐹𝐵) = 𝐶 ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
38 biidd 172 . . . . 5 ((𝐴𝑅𝐵𝑆) → (((𝐴𝑅𝐵𝑆) ∧ 𝜃) ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
3938bianabs 613 . . . 4 ((𝐴𝑅𝐵𝑆) → (((𝐴𝑅𝐵𝑆) ∧ 𝜃) ↔ 𝜃))
40393adant3 1041 . . 3 ((𝐴𝑅𝐵𝑆𝐶𝐷) → (((𝐴𝑅𝐵𝑆) ∧ 𝜃) ↔ 𝜃))
4140adantl 277 . 2 ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → (((𝐴𝑅𝐵𝑆) ∧ 𝜃) ↔ 𝜃))
4237, 41bitrd 188 1 ((𝜏 ∧ (𝐴𝑅𝐵𝑆𝐶𝐷)) → ((𝐴𝐹𝐵) = 𝐶𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002  wal 1393   = wceq 1395  ∃!weu 2077  wcel 2200  cop 3669  {copab 4143   Fn wfn 5309  cfv 5314  (class class class)co 5994  {coprab 5995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-iota 5274  df-fun 5316  df-fn 5317  df-fv 5322  df-ov 5997  df-oprab 5998
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator