ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fisumss GIF version

Theorem fisumss 11355
Description: Change the index set to a subset in a finite sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 23-Sep-2022.)
Hypotheses
Ref Expression
fsumss.1 (𝜑𝐴𝐵)
fsumss.2 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
fsumss.3 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
fisumss.adc (𝜑 → ∀𝑗𝐵 DECID 𝑗𝐴)
fsumss.4 (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
fisumss (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑗,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑗)   𝐶(𝑗,𝑘)

Proof of Theorem fisumss
Dummy variables 𝑓 𝑢 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumss.1 . . . . . 6 (𝜑𝐴𝐵)
2 sseq0 3456 . . . . . 6 ((𝐴𝐵𝐵 = ∅) → 𝐴 = ∅)
31, 2sylan 281 . . . . 5 ((𝜑𝐵 = ∅) → 𝐴 = ∅)
43sumeq1d 11329 . . . 4 ((𝜑𝐵 = ∅) → Σ𝑘𝐴 𝐶 = Σ𝑘 ∈ ∅ 𝐶)
5 simpr 109 . . . . 5 ((𝜑𝐵 = ∅) → 𝐵 = ∅)
65sumeq1d 11329 . . . 4 ((𝜑𝐵 = ∅) → Σ𝑘𝐵 𝐶 = Σ𝑘 ∈ ∅ 𝐶)
74, 6eqtr4d 2206 . . 3 ((𝜑𝐵 = ∅) → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
87ex 114 . 2 (𝜑 → (𝐵 = ∅ → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶))
9 cnvimass 4974 . . . . . . . . 9 (𝑓𝐴) ⊆ dom 𝑓
10 simprr 527 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)
11 f1of 5442 . . . . . . . . . 10 (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑓:(1...(♯‘𝐵))⟶𝐵)
1210, 11syl 14 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(♯‘𝐵))⟶𝐵)
139, 12fssdm 5362 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑓𝐴) ⊆ (1...(♯‘𝐵)))
1412ffnd 5348 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝑓 Fn (1...(♯‘𝐵)))
15 elpreima 5615 . . . . . . . . . . . 12 (𝑓 Fn (1...(♯‘𝐵)) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴)))
1614, 15syl 14 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴)))
1712ffvelrnda 5631 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (1...(♯‘𝐵))) → (𝑓𝑛) ∈ 𝐵)
1817ex 114 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑛 ∈ (1...(♯‘𝐵)) → (𝑓𝑛) ∈ 𝐵))
1918adantrd 277 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ((𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴) → (𝑓𝑛) ∈ 𝐵))
2016, 19sylbid 149 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑛 ∈ (𝑓𝐴) → (𝑓𝑛) ∈ 𝐵))
2120imp 123 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (𝑓𝐴)) → (𝑓𝑛) ∈ 𝐵)
22 fsumss.2 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2322ex 114 . . . . . . . . . . . . . 14 (𝜑 → (𝑘𝐴𝐶 ∈ ℂ))
2423adantr 274 . . . . . . . . . . . . 13 ((𝜑𝑘𝐵) → (𝑘𝐴𝐶 ∈ ℂ))
25 eldif 3130 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐵𝐴) ↔ (𝑘𝐵 ∧ ¬ 𝑘𝐴))
26 fsumss.3 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
27 0cn 7912 . . . . . . . . . . . . . . . 16 0 ∈ ℂ
2826, 27eqeltrdi 2261 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ ℂ)
2925, 28sylan2br 286 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘𝐵 ∧ ¬ 𝑘𝐴)) → 𝐶 ∈ ℂ)
3029expr 373 . . . . . . . . . . . . 13 ((𝜑𝑘𝐵) → (¬ 𝑘𝐴𝐶 ∈ ℂ))
31 eleq1w 2231 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
3231dcbid 833 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
33 fisumss.adc . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑗𝐵 DECID 𝑗𝐴)
3433adantr 274 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐵) → ∀𝑗𝐵 DECID 𝑗𝐴)
35 simpr 109 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐵) → 𝑘𝐵)
3632, 34, 35rspcdva 2839 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐵) → DECID 𝑘𝐴)
37 exmiddc 831 . . . . . . . . . . . . . 14 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
3836, 37syl 14 . . . . . . . . . . . . 13 ((𝜑𝑘𝐵) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
3924, 30, 38mpjaod 713 . . . . . . . . . . . 12 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
4039fmpttd 5651 . . . . . . . . . . 11 (𝜑 → (𝑘𝐵𝐶):𝐵⟶ℂ)
4140adantr 274 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑘𝐵𝐶):𝐵⟶ℂ)
4241ffvelrnda 5631 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ (𝑓𝑛) ∈ 𝐵) → ((𝑘𝐵𝐶)‘(𝑓𝑛)) ∈ ℂ)
4321, 42syldan 280 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (𝑓𝐴)) → ((𝑘𝐵𝐶)‘(𝑓𝑛)) ∈ ℂ)
44 eldifi 3249 . . . . . . . . . . . 12 (𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴)) → 𝑛 ∈ (1...(♯‘𝐵)))
4544, 17sylan2 284 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → (𝑓𝑛) ∈ 𝐵)
46 eldifn 3250 . . . . . . . . . . . . 13 (𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴)) → ¬ 𝑛 ∈ (𝑓𝐴))
4746adantl 275 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ¬ 𝑛 ∈ (𝑓𝐴))
4816adantr 274 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴)))
4944adantl 275 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → 𝑛 ∈ (1...(♯‘𝐵)))
5049biantrurd 303 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ((𝑓𝑛) ∈ 𝐴 ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴)))
5148, 50bitr4d 190 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑓𝑛) ∈ 𝐴))
5247, 51mtbid 667 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ¬ (𝑓𝑛) ∈ 𝐴)
5345, 52eldifd 3131 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → (𝑓𝑛) ∈ (𝐵𝐴))
54 difss 3253 . . . . . . . . . . . . 13 (𝐵𝐴) ⊆ 𝐵
55 resmpt 4939 . . . . . . . . . . . . 13 ((𝐵𝐴) ⊆ 𝐵 → ((𝑘𝐵𝐶) ↾ (𝐵𝐴)) = (𝑘 ∈ (𝐵𝐴) ↦ 𝐶))
5654, 55ax-mp 5 . . . . . . . . . . . 12 ((𝑘𝐵𝐶) ↾ (𝐵𝐴)) = (𝑘 ∈ (𝐵𝐴) ↦ 𝐶)
5756fveq1i 5497 . . . . . . . . . . 11 (((𝑘𝐵𝐶) ↾ (𝐵𝐴))‘(𝑓𝑛)) = ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛))
58 fvres 5520 . . . . . . . . . . 11 ((𝑓𝑛) ∈ (𝐵𝐴) → (((𝑘𝐵𝐶) ↾ (𝐵𝐴))‘(𝑓𝑛)) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
5957, 58eqtr3id 2217 . . . . . . . . . 10 ((𝑓𝑛) ∈ (𝐵𝐴) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
6053, 59syl 14 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
61 c0ex 7914 . . . . . . . . . . . . . . 15 0 ∈ V
6261elsn2 3617 . . . . . . . . . . . . . 14 (𝐶 ∈ {0} ↔ 𝐶 = 0)
6326, 62sylibr 133 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ {0})
6463fmpttd 5651 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (𝐵𝐴) ↦ 𝐶):(𝐵𝐴)⟶{0})
6564ad2antrr 485 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → (𝑘 ∈ (𝐵𝐴) ↦ 𝐶):(𝐵𝐴)⟶{0})
6665, 53ffvelrnd 5632 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) ∈ {0})
67 elsni 3601 . . . . . . . . . 10 (((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) ∈ {0} → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = 0)
6866, 67syl 14 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = 0)
6960, 68eqtr3d 2205 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘𝐵𝐶)‘(𝑓𝑛)) = 0)
70 eleq1 2233 . . . . . . . . . . . . 13 (𝑗 = (𝑓𝑢) → (𝑗𝐴 ↔ (𝑓𝑢) ∈ 𝐴))
7170dcbid 833 . . . . . . . . . . . 12 (𝑗 = (𝑓𝑢) → (DECID 𝑗𝐴DECID (𝑓𝑢) ∈ 𝐴))
7233ad3antrrr 489 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ∈ (1...(♯‘𝐵))) → ∀𝑗𝐵 DECID 𝑗𝐴)
7312ad2antrr 485 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ∈ (1...(♯‘𝐵))) → 𝑓:(1...(♯‘𝐵))⟶𝐵)
74 simpr 109 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ∈ (1...(♯‘𝐵))) → 𝑢 ∈ (1...(♯‘𝐵)))
7573, 74ffvelrnd 5632 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ∈ (1...(♯‘𝐵))) → (𝑓𝑢) ∈ 𝐵)
7671, 72, 75rspcdva 2839 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ∈ (1...(♯‘𝐵))) → DECID (𝑓𝑢) ∈ 𝐴)
7710ad2antrr 485 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ∈ (1...(♯‘𝐵))) → 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)
78 f1ofun 5444 . . . . . . . . . . . . . 14 (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵 → Fun 𝑓)
7977, 78syl 14 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ∈ (1...(♯‘𝐵))) → Fun 𝑓)
80 f1odm 5446 . . . . . . . . . . . . . . 15 (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵 → dom 𝑓 = (1...(♯‘𝐵)))
8177, 80syl 14 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ∈ (1...(♯‘𝐵))) → dom 𝑓 = (1...(♯‘𝐵)))
8274, 81eleqtrrd 2250 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ∈ (1...(♯‘𝐵))) → 𝑢 ∈ dom 𝑓)
83 fvimacnv 5611 . . . . . . . . . . . . 13 ((Fun 𝑓𝑢 ∈ dom 𝑓) → ((𝑓𝑢) ∈ 𝐴𝑢 ∈ (𝑓𝐴)))
8479, 82, 83syl2anc 409 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ∈ (1...(♯‘𝐵))) → ((𝑓𝑢) ∈ 𝐴𝑢 ∈ (𝑓𝐴)))
8584dcbid 833 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ∈ (1...(♯‘𝐵))) → (DECID (𝑓𝑢) ∈ 𝐴DECID 𝑢 ∈ (𝑓𝐴)))
8676, 85mpbid 146 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ∈ (1...(♯‘𝐵))) → DECID 𝑢 ∈ (𝑓𝐴))
87 elpreima 5615 . . . . . . . . . . . . . . . . 17 (𝑓 Fn (1...(♯‘𝐵)) → (𝑢 ∈ (𝑓𝐴) ↔ (𝑢 ∈ (1...(♯‘𝐵)) ∧ (𝑓𝑢) ∈ 𝐴)))
88 simpl 108 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ (1...(♯‘𝐵)) ∧ (𝑓𝑢) ∈ 𝐴) → 𝑢 ∈ (1...(♯‘𝐵)))
8987, 88syl6bi 162 . . . . . . . . . . . . . . . 16 (𝑓 Fn (1...(♯‘𝐵)) → (𝑢 ∈ (𝑓𝐴) → 𝑢 ∈ (1...(♯‘𝐵))))
9089con3d 626 . . . . . . . . . . . . . . 15 (𝑓 Fn (1...(♯‘𝐵)) → (¬ 𝑢 ∈ (1...(♯‘𝐵)) → ¬ 𝑢 ∈ (𝑓𝐴)))
9114, 90syl 14 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (¬ 𝑢 ∈ (1...(♯‘𝐵)) → ¬ 𝑢 ∈ (𝑓𝐴)))
9291adantr 274 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) → (¬ 𝑢 ∈ (1...(♯‘𝐵)) → ¬ 𝑢 ∈ (𝑓𝐴)))
9392imp 123 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ∈ (1...(♯‘𝐵))) → ¬ 𝑢 ∈ (𝑓𝐴))
9493olcd 729 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ∈ (1...(♯‘𝐵))) → (𝑢 ∈ (𝑓𝐴) ∨ ¬ 𝑢 ∈ (𝑓𝐴)))
95 df-dc 830 . . . . . . . . . . 11 (DECID 𝑢 ∈ (𝑓𝐴) ↔ (𝑢 ∈ (𝑓𝐴) ∨ ¬ 𝑢 ∈ (𝑓𝐴)))
9694, 95sylibr 133 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ∈ (1...(♯‘𝐵))) → DECID 𝑢 ∈ (𝑓𝐴))
97 eluzelz 9496 . . . . . . . . . . . . 13 (𝑢 ∈ (ℤ‘1) → 𝑢 ∈ ℤ)
9897adantl 275 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) → 𝑢 ∈ ℤ)
99 1zzd 9239 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) → 1 ∈ ℤ)
100 simplrl 530 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) → (♯‘𝐵) ∈ ℕ)
101100nnzd 9333 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) → (♯‘𝐵) ∈ ℤ)
102 fzdcel 9996 . . . . . . . . . . . 12 ((𝑢 ∈ ℤ ∧ 1 ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) → DECID 𝑢 ∈ (1...(♯‘𝐵)))
10398, 99, 101, 102syl3anc 1233 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) → DECID 𝑢 ∈ (1...(♯‘𝐵)))
104 exmiddc 831 . . . . . . . . . . 11 (DECID 𝑢 ∈ (1...(♯‘𝐵)) → (𝑢 ∈ (1...(♯‘𝐵)) ∨ ¬ 𝑢 ∈ (1...(♯‘𝐵))))
105103, 104syl 14 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) → (𝑢 ∈ (1...(♯‘𝐵)) ∨ ¬ 𝑢 ∈ (1...(♯‘𝐵))))
10686, 96, 105mpjaodan 793 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) → DECID 𝑢 ∈ (𝑓𝐴))
107106ralrimiva 2543 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ∀𝑢 ∈ (ℤ‘1)DECID 𝑢 ∈ (𝑓𝐴))
108 1zzd 9239 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 1 ∈ ℤ)
109 fzssuz 10021 . . . . . . . . 9 (1...(♯‘𝐵)) ⊆ (ℤ‘1)
110109a1i 9 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (1...(♯‘𝐵)) ⊆ (ℤ‘1))
111103ralrimiva 2543 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ∀𝑢 ∈ (ℤ‘1)DECID 𝑢 ∈ (1...(♯‘𝐵)))
11213, 43, 69, 107, 108, 110, 111isumss 11354 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → Σ𝑛 ∈ (𝑓𝐴)((𝑘𝐵𝐶)‘(𝑓𝑛)) = Σ𝑛 ∈ (1...(♯‘𝐵))((𝑘𝐵𝐶)‘(𝑓𝑛)))
1131ad2antrr 485 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → 𝐴𝐵)
114113resmptd 4942 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → ((𝑘𝐵𝐶) ↾ 𝐴) = (𝑘𝐴𝐶))
115114fveq1d 5498 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → (((𝑘𝐵𝐶) ↾ 𝐴)‘𝑚) = ((𝑘𝐴𝐶)‘𝑚))
116 fvres 5520 . . . . . . . . . . 11 (𝑚𝐴 → (((𝑘𝐵𝐶) ↾ 𝐴)‘𝑚) = ((𝑘𝐵𝐶)‘𝑚))
117116adantl 275 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → (((𝑘𝐵𝐶) ↾ 𝐴)‘𝑚) = ((𝑘𝐵𝐶)‘𝑚))
118115, 117eqtr3d 2205 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) = ((𝑘𝐵𝐶)‘𝑚))
119118sumeq2dv 11331 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑚𝐴 ((𝑘𝐵𝐶)‘𝑚))
120 fveq2 5496 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐵𝐶)‘𝑚) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
1211adantr 274 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝐴𝐵)
122 fsumss.4 . . . . . . . . . . . 12 (𝜑𝐵 ∈ Fin)
123 ssfidc 6912 . . . . . . . . . . . 12 ((𝐵 ∈ Fin ∧ 𝐴𝐵 ∧ ∀𝑗𝐵 DECID 𝑗𝐴) → 𝐴 ∈ Fin)
124122, 1, 33, 123syl3anc 1233 . . . . . . . . . . 11 (𝜑𝐴 ∈ Fin)
125124adantr 274 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝐴 ∈ Fin)
126121, 10, 125preimaf1ofi 6928 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑓𝐴) ∈ Fin)
127 f1of1 5441 . . . . . . . . . . . 12 (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑓:(1...(♯‘𝐵))–1-1𝐵)
12810, 127syl 14 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(♯‘𝐵))–1-1𝐵)
129 f1ores 5457 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝐵))–1-1𝐵 ∧ (𝑓𝐴) ⊆ (1...(♯‘𝐵))) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto→(𝑓 “ (𝑓𝐴)))
130128, 13, 129syl2anc 409 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto→(𝑓 “ (𝑓𝐴)))
131 f1ofo 5449 . . . . . . . . . . . . 13 (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑓:(1...(♯‘𝐵))–onto𝐵)
13210, 131syl 14 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(♯‘𝐵))–onto𝐵)
133 foimacnv 5460 . . . . . . . . . . . 12 ((𝑓:(1...(♯‘𝐵))–onto𝐵𝐴𝐵) → (𝑓 “ (𝑓𝐴)) = 𝐴)
134132, 121, 133syl2anc 409 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑓 “ (𝑓𝐴)) = 𝐴)
135 f1oeq3 5433 . . . . . . . . . . 11 ((𝑓 “ (𝑓𝐴)) = 𝐴 → ((𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto→(𝑓 “ (𝑓𝐴)) ↔ (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto𝐴))
136134, 135syl 14 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ((𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto→(𝑓 “ (𝑓𝐴)) ↔ (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto𝐴))
137130, 136mpbid 146 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto𝐴)
138 fvres 5520 . . . . . . . . . 10 (𝑛 ∈ (𝑓𝐴) → ((𝑓 ↾ (𝑓𝐴))‘𝑛) = (𝑓𝑛))
139138adantl 275 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (𝑓𝐴)) → ((𝑓 ↾ (𝑓𝐴))‘𝑛) = (𝑓𝑛))
140121sselda 3147 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → 𝑚𝐵)
14141ffvelrnda 5631 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
142140, 141syldan 280 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
143120, 126, 137, 139, 142fsumf1o 11353 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → Σ𝑚𝐴 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑛 ∈ (𝑓𝐴)((𝑘𝐵𝐶)‘(𝑓𝑛)))
144119, 143eqtrd 2203 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑛 ∈ (𝑓𝐴)((𝑘𝐵𝐶)‘(𝑓𝑛)))
145 simprl 526 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (♯‘𝐵) ∈ ℕ)
146145nnzd 9333 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (♯‘𝐵) ∈ ℤ)
147108, 146fzfigd 10387 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (1...(♯‘𝐵)) ∈ Fin)
148 eqidd 2171 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (1...(♯‘𝐵))) → (𝑓𝑛) = (𝑓𝑛))
149120, 147, 10, 148, 141fsumf1o 11353 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑛 ∈ (1...(♯‘𝐵))((𝑘𝐵𝐶)‘(𝑓𝑛)))
150112, 144, 1493eqtr4d 2213 . . . . . 6 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚))
15122ralrimiva 2543 . . . . . . . 8 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
152 sumfct 11337 . . . . . . . 8 (∀𝑘𝐴 𝐶 ∈ ℂ → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶)
153151, 152syl 14 . . . . . . 7 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶)
154153adantr 274 . . . . . 6 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶)
15522adantlr 474 . . . . . . . . . 10 (((𝜑𝑘𝐵) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
156 simpll 524 . . . . . . . . . . . 12 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝜑)
157 simplr 525 . . . . . . . . . . . . 13 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝑘𝐵)
158 simpr 109 . . . . . . . . . . . . 13 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → ¬ 𝑘𝐴)
159157, 158eldifd 3131 . . . . . . . . . . . 12 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝑘 ∈ (𝐵𝐴))
160156, 159, 26syl2anc 409 . . . . . . . . . . 11 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝐶 = 0)
161 0cnd 7913 . . . . . . . . . . 11 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 0 ∈ ℂ)
162160, 161eqeltrd 2247 . . . . . . . . . 10 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝐶 ∈ ℂ)
163155, 162, 38mpjaodan 793 . . . . . . . . 9 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
164163ralrimiva 2543 . . . . . . . 8 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
165 sumfct 11337 . . . . . . . 8 (∀𝑘𝐵 𝐶 ∈ ℂ → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑘𝐵 𝐶)
166164, 165syl 14 . . . . . . 7 (𝜑 → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑘𝐵 𝐶)
167166adantr 274 . . . . . 6 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑘𝐵 𝐶)
168150, 154, 1673eqtr3d 2211 . . . . 5 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
169168expr 373 . . . 4 ((𝜑 ∧ (♯‘𝐵) ∈ ℕ) → (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶))
170169exlimdv 1812 . . 3 ((𝜑 ∧ (♯‘𝐵) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶))
171170expimpd 361 . 2 (𝜑 → (((♯‘𝐵) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵) → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶))
172 fz1f1o 11338 . . 3 (𝐵 ∈ Fin → (𝐵 = ∅ ∨ ((♯‘𝐵) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)))
173122, 172syl 14 . 2 (𝜑 → (𝐵 = ∅ ∨ ((♯‘𝐵) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)))
1748, 171, 173mpjaod 713 1 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  DECID wdc 829   = wceq 1348  wex 1485  wcel 2141  wral 2448  cdif 3118  wss 3121  c0 3414  {csn 3583  cmpt 4050  ccnv 4610  dom cdm 4611  cres 4613  cima 4614  Fun wfun 5192   Fn wfn 5193  wf 5194  1-1wf1 5195  ontowfo 5196  1-1-ontowf1o 5197  cfv 5198  (class class class)co 5853  Fincfn 6718  cc 7772  0cc0 7774  1c1 7775  cn 8878  cz 9212  cuz 9487  ...cfz 9965  chash 10709  Σcsu 11316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317
This theorem is referenced by:  isumss2  11356
  Copyright terms: Public domain W3C validator