ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fisumss GIF version

Theorem fisumss 11384
Description: Change the index set to a subset in a finite sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 23-Sep-2022.)
Hypotheses
Ref Expression
fsumss.1 (𝜑𝐴𝐵)
fsumss.2 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
fsumss.3 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
fisumss.adc (𝜑 → ∀𝑗𝐵 DECID 𝑗𝐴)
fsumss.4 (𝜑𝐵 ∈ Fin)
Assertion
Ref Expression
fisumss (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑗,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑗)   𝐶(𝑗,𝑘)

Proof of Theorem fisumss
Dummy variables 𝑓 𝑢 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumss.1 . . . . . 6 (𝜑𝐴𝐵)
2 sseq0 3464 . . . . . 6 ((𝐴𝐵𝐵 = ∅) → 𝐴 = ∅)
31, 2sylan 283 . . . . 5 ((𝜑𝐵 = ∅) → 𝐴 = ∅)
43sumeq1d 11358 . . . 4 ((𝜑𝐵 = ∅) → Σ𝑘𝐴 𝐶 = Σ𝑘 ∈ ∅ 𝐶)
5 simpr 110 . . . . 5 ((𝜑𝐵 = ∅) → 𝐵 = ∅)
65sumeq1d 11358 . . . 4 ((𝜑𝐵 = ∅) → Σ𝑘𝐵 𝐶 = Σ𝑘 ∈ ∅ 𝐶)
74, 6eqtr4d 2213 . . 3 ((𝜑𝐵 = ∅) → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
87ex 115 . 2 (𝜑 → (𝐵 = ∅ → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶))
9 cnvimass 4987 . . . . . . . . 9 (𝑓𝐴) ⊆ dom 𝑓
10 simprr 531 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)
11 f1of 5457 . . . . . . . . . 10 (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑓:(1...(♯‘𝐵))⟶𝐵)
1210, 11syl 14 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(♯‘𝐵))⟶𝐵)
139, 12fssdm 5376 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑓𝐴) ⊆ (1...(♯‘𝐵)))
1412ffnd 5362 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝑓 Fn (1...(♯‘𝐵)))
15 elpreima 5631 . . . . . . . . . . . 12 (𝑓 Fn (1...(♯‘𝐵)) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴)))
1614, 15syl 14 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴)))
1712ffvelcdmda 5647 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (1...(♯‘𝐵))) → (𝑓𝑛) ∈ 𝐵)
1817ex 115 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑛 ∈ (1...(♯‘𝐵)) → (𝑓𝑛) ∈ 𝐵))
1918adantrd 279 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ((𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴) → (𝑓𝑛) ∈ 𝐵))
2016, 19sylbid 150 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑛 ∈ (𝑓𝐴) → (𝑓𝑛) ∈ 𝐵))
2120imp 124 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (𝑓𝐴)) → (𝑓𝑛) ∈ 𝐵)
22 fsumss.2 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
2322ex 115 . . . . . . . . . . . . . 14 (𝜑 → (𝑘𝐴𝐶 ∈ ℂ))
2423adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑘𝐵) → (𝑘𝐴𝐶 ∈ ℂ))
25 eldif 3138 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝐵𝐴) ↔ (𝑘𝐵 ∧ ¬ 𝑘𝐴))
26 fsumss.3 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
27 0cn 7940 . . . . . . . . . . . . . . . 16 0 ∈ ℂ
2826, 27eqeltrdi 2268 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ ℂ)
2925, 28sylan2br 288 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘𝐵 ∧ ¬ 𝑘𝐴)) → 𝐶 ∈ ℂ)
3029expr 375 . . . . . . . . . . . . 13 ((𝜑𝑘𝐵) → (¬ 𝑘𝐴𝐶 ∈ ℂ))
31 eleq1w 2238 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → (𝑗𝐴𝑘𝐴))
3231dcbid 838 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (DECID 𝑗𝐴DECID 𝑘𝐴))
33 fisumss.adc . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑗𝐵 DECID 𝑗𝐴)
3433adantr 276 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐵) → ∀𝑗𝐵 DECID 𝑗𝐴)
35 simpr 110 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐵) → 𝑘𝐵)
3632, 34, 35rspcdva 2846 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐵) → DECID 𝑘𝐴)
37 exmiddc 836 . . . . . . . . . . . . . 14 (DECID 𝑘𝐴 → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
3836, 37syl 14 . . . . . . . . . . . . 13 ((𝜑𝑘𝐵) → (𝑘𝐴 ∨ ¬ 𝑘𝐴))
3924, 30, 38mpjaod 718 . . . . . . . . . . . 12 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
4039fmpttd 5667 . . . . . . . . . . 11 (𝜑 → (𝑘𝐵𝐶):𝐵⟶ℂ)
4140adantr 276 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑘𝐵𝐶):𝐵⟶ℂ)
4241ffvelcdmda 5647 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ (𝑓𝑛) ∈ 𝐵) → ((𝑘𝐵𝐶)‘(𝑓𝑛)) ∈ ℂ)
4321, 42syldan 282 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (𝑓𝐴)) → ((𝑘𝐵𝐶)‘(𝑓𝑛)) ∈ ℂ)
44 eldifi 3257 . . . . . . . . . . . 12 (𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴)) → 𝑛 ∈ (1...(♯‘𝐵)))
4544, 17sylan2 286 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → (𝑓𝑛) ∈ 𝐵)
46 eldifn 3258 . . . . . . . . . . . . 13 (𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴)) → ¬ 𝑛 ∈ (𝑓𝐴))
4746adantl 277 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ¬ 𝑛 ∈ (𝑓𝐴))
4816adantr 276 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴)))
4944adantl 277 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → 𝑛 ∈ (1...(♯‘𝐵)))
5049biantrurd 305 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ((𝑓𝑛) ∈ 𝐴 ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓𝑛) ∈ 𝐴)))
5148, 50bitr4d 191 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → (𝑛 ∈ (𝑓𝐴) ↔ (𝑓𝑛) ∈ 𝐴))
5247, 51mtbid 672 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ¬ (𝑓𝑛) ∈ 𝐴)
5345, 52eldifd 3139 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → (𝑓𝑛) ∈ (𝐵𝐴))
54 difss 3261 . . . . . . . . . . . . 13 (𝐵𝐴) ⊆ 𝐵
55 resmpt 4951 . . . . . . . . . . . . 13 ((𝐵𝐴) ⊆ 𝐵 → ((𝑘𝐵𝐶) ↾ (𝐵𝐴)) = (𝑘 ∈ (𝐵𝐴) ↦ 𝐶))
5654, 55ax-mp 5 . . . . . . . . . . . 12 ((𝑘𝐵𝐶) ↾ (𝐵𝐴)) = (𝑘 ∈ (𝐵𝐴) ↦ 𝐶)
5756fveq1i 5512 . . . . . . . . . . 11 (((𝑘𝐵𝐶) ↾ (𝐵𝐴))‘(𝑓𝑛)) = ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛))
58 fvres 5535 . . . . . . . . . . 11 ((𝑓𝑛) ∈ (𝐵𝐴) → (((𝑘𝐵𝐶) ↾ (𝐵𝐴))‘(𝑓𝑛)) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
5957, 58eqtr3id 2224 . . . . . . . . . 10 ((𝑓𝑛) ∈ (𝐵𝐴) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
6053, 59syl 14 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
61 c0ex 7942 . . . . . . . . . . . . . . 15 0 ∈ V
6261elsn2 3625 . . . . . . . . . . . . . 14 (𝐶 ∈ {0} ↔ 𝐶 = 0)
6326, 62sylibr 134 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ {0})
6463fmpttd 5667 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (𝐵𝐴) ↦ 𝐶):(𝐵𝐴)⟶{0})
6564ad2antrr 488 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → (𝑘 ∈ (𝐵𝐴) ↦ 𝐶):(𝐵𝐴)⟶{0})
6665, 53ffvelcdmd 5648 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) ∈ {0})
67 elsni 3609 . . . . . . . . . 10 (((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) ∈ {0} → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = 0)
6866, 67syl 14 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘 ∈ (𝐵𝐴) ↦ 𝐶)‘(𝑓𝑛)) = 0)
6960, 68eqtr3d 2212 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (𝑓𝐴))) → ((𝑘𝐵𝐶)‘(𝑓𝑛)) = 0)
70 eleq1 2240 . . . . . . . . . . . . 13 (𝑗 = (𝑓𝑢) → (𝑗𝐴 ↔ (𝑓𝑢) ∈ 𝐴))
7170dcbid 838 . . . . . . . . . . . 12 (𝑗 = (𝑓𝑢) → (DECID 𝑗𝐴DECID (𝑓𝑢) ∈ 𝐴))
7233ad3antrrr 492 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ∈ (1...(♯‘𝐵))) → ∀𝑗𝐵 DECID 𝑗𝐴)
7312ad2antrr 488 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ∈ (1...(♯‘𝐵))) → 𝑓:(1...(♯‘𝐵))⟶𝐵)
74 simpr 110 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ∈ (1...(♯‘𝐵))) → 𝑢 ∈ (1...(♯‘𝐵)))
7573, 74ffvelcdmd 5648 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ∈ (1...(♯‘𝐵))) → (𝑓𝑢) ∈ 𝐵)
7671, 72, 75rspcdva 2846 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ∈ (1...(♯‘𝐵))) → DECID (𝑓𝑢) ∈ 𝐴)
7710ad2antrr 488 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ∈ (1...(♯‘𝐵))) → 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)
78 f1ofun 5459 . . . . . . . . . . . . . 14 (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵 → Fun 𝑓)
7977, 78syl 14 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ∈ (1...(♯‘𝐵))) → Fun 𝑓)
80 f1odm 5461 . . . . . . . . . . . . . . 15 (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵 → dom 𝑓 = (1...(♯‘𝐵)))
8177, 80syl 14 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ∈ (1...(♯‘𝐵))) → dom 𝑓 = (1...(♯‘𝐵)))
8274, 81eleqtrrd 2257 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ∈ (1...(♯‘𝐵))) → 𝑢 ∈ dom 𝑓)
83 fvimacnv 5627 . . . . . . . . . . . . 13 ((Fun 𝑓𝑢 ∈ dom 𝑓) → ((𝑓𝑢) ∈ 𝐴𝑢 ∈ (𝑓𝐴)))
8479, 82, 83syl2anc 411 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ∈ (1...(♯‘𝐵))) → ((𝑓𝑢) ∈ 𝐴𝑢 ∈ (𝑓𝐴)))
8584dcbid 838 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ∈ (1...(♯‘𝐵))) → (DECID (𝑓𝑢) ∈ 𝐴DECID 𝑢 ∈ (𝑓𝐴)))
8676, 85mpbid 147 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ 𝑢 ∈ (1...(♯‘𝐵))) → DECID 𝑢 ∈ (𝑓𝐴))
87 elpreima 5631 . . . . . . . . . . . . . . . . 17 (𝑓 Fn (1...(♯‘𝐵)) → (𝑢 ∈ (𝑓𝐴) ↔ (𝑢 ∈ (1...(♯‘𝐵)) ∧ (𝑓𝑢) ∈ 𝐴)))
88 simpl 109 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ (1...(♯‘𝐵)) ∧ (𝑓𝑢) ∈ 𝐴) → 𝑢 ∈ (1...(♯‘𝐵)))
8987, 88syl6bi 163 . . . . . . . . . . . . . . . 16 (𝑓 Fn (1...(♯‘𝐵)) → (𝑢 ∈ (𝑓𝐴) → 𝑢 ∈ (1...(♯‘𝐵))))
9089con3d 631 . . . . . . . . . . . . . . 15 (𝑓 Fn (1...(♯‘𝐵)) → (¬ 𝑢 ∈ (1...(♯‘𝐵)) → ¬ 𝑢 ∈ (𝑓𝐴)))
9114, 90syl 14 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (¬ 𝑢 ∈ (1...(♯‘𝐵)) → ¬ 𝑢 ∈ (𝑓𝐴)))
9291adantr 276 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) → (¬ 𝑢 ∈ (1...(♯‘𝐵)) → ¬ 𝑢 ∈ (𝑓𝐴)))
9392imp 124 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ∈ (1...(♯‘𝐵))) → ¬ 𝑢 ∈ (𝑓𝐴))
9493olcd 734 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ∈ (1...(♯‘𝐵))) → (𝑢 ∈ (𝑓𝐴) ∨ ¬ 𝑢 ∈ (𝑓𝐴)))
95 df-dc 835 . . . . . . . . . . 11 (DECID 𝑢 ∈ (𝑓𝐴) ↔ (𝑢 ∈ (𝑓𝐴) ∨ ¬ 𝑢 ∈ (𝑓𝐴)))
9694, 95sylibr 134 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) ∧ ¬ 𝑢 ∈ (1...(♯‘𝐵))) → DECID 𝑢 ∈ (𝑓𝐴))
97 eluzelz 9526 . . . . . . . . . . . . 13 (𝑢 ∈ (ℤ‘1) → 𝑢 ∈ ℤ)
9897adantl 277 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) → 𝑢 ∈ ℤ)
99 1zzd 9269 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) → 1 ∈ ℤ)
100 simplrl 535 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) → (♯‘𝐵) ∈ ℕ)
101100nnzd 9363 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) → (♯‘𝐵) ∈ ℤ)
102 fzdcel 10026 . . . . . . . . . . . 12 ((𝑢 ∈ ℤ ∧ 1 ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) → DECID 𝑢 ∈ (1...(♯‘𝐵)))
10398, 99, 101, 102syl3anc 1238 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) → DECID 𝑢 ∈ (1...(♯‘𝐵)))
104 exmiddc 836 . . . . . . . . . . 11 (DECID 𝑢 ∈ (1...(♯‘𝐵)) → (𝑢 ∈ (1...(♯‘𝐵)) ∨ ¬ 𝑢 ∈ (1...(♯‘𝐵))))
105103, 104syl 14 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) → (𝑢 ∈ (1...(♯‘𝐵)) ∨ ¬ 𝑢 ∈ (1...(♯‘𝐵))))
10686, 96, 105mpjaodan 798 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑢 ∈ (ℤ‘1)) → DECID 𝑢 ∈ (𝑓𝐴))
107106ralrimiva 2550 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ∀𝑢 ∈ (ℤ‘1)DECID 𝑢 ∈ (𝑓𝐴))
108 1zzd 9269 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 1 ∈ ℤ)
109 fzssuz 10051 . . . . . . . . 9 (1...(♯‘𝐵)) ⊆ (ℤ‘1)
110109a1i 9 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (1...(♯‘𝐵)) ⊆ (ℤ‘1))
111103ralrimiva 2550 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ∀𝑢 ∈ (ℤ‘1)DECID 𝑢 ∈ (1...(♯‘𝐵)))
11213, 43, 69, 107, 108, 110, 111isumss 11383 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → Σ𝑛 ∈ (𝑓𝐴)((𝑘𝐵𝐶)‘(𝑓𝑛)) = Σ𝑛 ∈ (1...(♯‘𝐵))((𝑘𝐵𝐶)‘(𝑓𝑛)))
1131ad2antrr 488 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → 𝐴𝐵)
114113resmptd 4954 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → ((𝑘𝐵𝐶) ↾ 𝐴) = (𝑘𝐴𝐶))
115114fveq1d 5513 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → (((𝑘𝐵𝐶) ↾ 𝐴)‘𝑚) = ((𝑘𝐴𝐶)‘𝑚))
116 fvres 5535 . . . . . . . . . . 11 (𝑚𝐴 → (((𝑘𝐵𝐶) ↾ 𝐴)‘𝑚) = ((𝑘𝐵𝐶)‘𝑚))
117116adantl 277 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → (((𝑘𝐵𝐶) ↾ 𝐴)‘𝑚) = ((𝑘𝐵𝐶)‘𝑚))
118115, 117eqtr3d 2212 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐶)‘𝑚) = ((𝑘𝐵𝐶)‘𝑚))
119118sumeq2dv 11360 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑚𝐴 ((𝑘𝐵𝐶)‘𝑚))
120 fveq2 5511 . . . . . . . . 9 (𝑚 = (𝑓𝑛) → ((𝑘𝐵𝐶)‘𝑚) = ((𝑘𝐵𝐶)‘(𝑓𝑛)))
1211adantr 276 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝐴𝐵)
122 fsumss.4 . . . . . . . . . . . 12 (𝜑𝐵 ∈ Fin)
123 ssfidc 6928 . . . . . . . . . . . 12 ((𝐵 ∈ Fin ∧ 𝐴𝐵 ∧ ∀𝑗𝐵 DECID 𝑗𝐴) → 𝐴 ∈ Fin)
124122, 1, 33, 123syl3anc 1238 . . . . . . . . . . 11 (𝜑𝐴 ∈ Fin)
125124adantr 276 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝐴 ∈ Fin)
126121, 10, 125preimaf1ofi 6944 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑓𝐴) ∈ Fin)
127 f1of1 5456 . . . . . . . . . . . 12 (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑓:(1...(♯‘𝐵))–1-1𝐵)
12810, 127syl 14 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(♯‘𝐵))–1-1𝐵)
129 f1ores 5472 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝐵))–1-1𝐵 ∧ (𝑓𝐴) ⊆ (1...(♯‘𝐵))) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto→(𝑓 “ (𝑓𝐴)))
130128, 13, 129syl2anc 411 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto→(𝑓 “ (𝑓𝐴)))
131 f1ofo 5464 . . . . . . . . . . . . 13 (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵𝑓:(1...(♯‘𝐵))–onto𝐵)
13210, 131syl 14 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → 𝑓:(1...(♯‘𝐵))–onto𝐵)
133 foimacnv 5475 . . . . . . . . . . . 12 ((𝑓:(1...(♯‘𝐵))–onto𝐵𝐴𝐵) → (𝑓 “ (𝑓𝐴)) = 𝐴)
134132, 121, 133syl2anc 411 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑓 “ (𝑓𝐴)) = 𝐴)
135 f1oeq3 5447 . . . . . . . . . . 11 ((𝑓 “ (𝑓𝐴)) = 𝐴 → ((𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto→(𝑓 “ (𝑓𝐴)) ↔ (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto𝐴))
136134, 135syl 14 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → ((𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto→(𝑓 “ (𝑓𝐴)) ↔ (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto𝐴))
137130, 136mpbid 147 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (𝑓 ↾ (𝑓𝐴)):(𝑓𝐴)–1-1-onto𝐴)
138 fvres 5535 . . . . . . . . . 10 (𝑛 ∈ (𝑓𝐴) → ((𝑓 ↾ (𝑓𝐴))‘𝑛) = (𝑓𝑛))
139138adantl 277 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (𝑓𝐴)) → ((𝑓 ↾ (𝑓𝐴))‘𝑛) = (𝑓𝑛))
140121sselda 3155 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → 𝑚𝐵)
14141ffvelcdmda 5647 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐵) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
142140, 141syldan 282 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑚𝐴) → ((𝑘𝐵𝐶)‘𝑚) ∈ ℂ)
143120, 126, 137, 139, 142fsumf1o 11382 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → Σ𝑚𝐴 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑛 ∈ (𝑓𝐴)((𝑘𝐵𝐶)‘(𝑓𝑛)))
144119, 143eqtrd 2210 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑛 ∈ (𝑓𝐴)((𝑘𝐵𝐶)‘(𝑓𝑛)))
145 simprl 529 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (♯‘𝐵) ∈ ℕ)
146145nnzd 9363 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (♯‘𝐵) ∈ ℤ)
147108, 146fzfigd 10417 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → (1...(♯‘𝐵)) ∈ Fin)
148 eqidd 2178 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) ∧ 𝑛 ∈ (1...(♯‘𝐵))) → (𝑓𝑛) = (𝑓𝑛))
149120, 147, 10, 148, 141fsumf1o 11382 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑛 ∈ (1...(♯‘𝐵))((𝑘𝐵𝐶)‘(𝑓𝑛)))
150112, 144, 1493eqtr4d 2220 . . . . . 6 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚))
15122ralrimiva 2550 . . . . . . . 8 (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)
152 sumfct 11366 . . . . . . . 8 (∀𝑘𝐴 𝐶 ∈ ℂ → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶)
153151, 152syl 14 . . . . . . 7 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶)
154153adantr 276 . . . . . 6 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → Σ𝑚𝐴 ((𝑘𝐴𝐶)‘𝑚) = Σ𝑘𝐴 𝐶)
15522adantlr 477 . . . . . . . . . 10 (((𝜑𝑘𝐵) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
156 simpll 527 . . . . . . . . . . . 12 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝜑)
157 simplr 528 . . . . . . . . . . . . 13 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝑘𝐵)
158 simpr 110 . . . . . . . . . . . . 13 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → ¬ 𝑘𝐴)
159157, 158eldifd 3139 . . . . . . . . . . . 12 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝑘 ∈ (𝐵𝐴))
160156, 159, 26syl2anc 411 . . . . . . . . . . 11 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝐶 = 0)
161 0cnd 7941 . . . . . . . . . . 11 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 0 ∈ ℂ)
162160, 161eqeltrd 2254 . . . . . . . . . 10 (((𝜑𝑘𝐵) ∧ ¬ 𝑘𝐴) → 𝐶 ∈ ℂ)
163155, 162, 38mpjaodan 798 . . . . . . . . 9 ((𝜑𝑘𝐵) → 𝐶 ∈ ℂ)
164163ralrimiva 2550 . . . . . . . 8 (𝜑 → ∀𝑘𝐵 𝐶 ∈ ℂ)
165 sumfct 11366 . . . . . . . 8 (∀𝑘𝐵 𝐶 ∈ ℂ → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑘𝐵 𝐶)
166164, 165syl 14 . . . . . . 7 (𝜑 → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑘𝐵 𝐶)
167166adantr 276 . . . . . 6 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → Σ𝑚𝐵 ((𝑘𝐵𝐶)‘𝑚) = Σ𝑘𝐵 𝐶)
168150, 154, 1673eqtr3d 2218 . . . . 5 ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)) → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
169168expr 375 . . . 4 ((𝜑 ∧ (♯‘𝐵) ∈ ℕ) → (𝑓:(1...(♯‘𝐵))–1-1-onto𝐵 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶))
170169exlimdv 1819 . . 3 ((𝜑 ∧ (♯‘𝐵) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶))
171170expimpd 363 . 2 (𝜑 → (((♯‘𝐵) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵) → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶))
172 fz1f1o 11367 . . 3 (𝐵 ∈ Fin → (𝐵 = ∅ ∨ ((♯‘𝐵) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)))
173122, 172syl 14 . 2 (𝜑 → (𝐵 = ∅ ∨ ((♯‘𝐵) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto𝐵)))
1748, 171, 173mpjaod 718 1 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  DECID wdc 834   = wceq 1353  wex 1492  wcel 2148  wral 2455  cdif 3126  wss 3129  c0 3422  {csn 3591  cmpt 4061  ccnv 4622  dom cdm 4623  cres 4625  cima 4626  Fun wfun 5206   Fn wfn 5207  wf 5208  1-1wf1 5209  ontowfo 5210  1-1-ontowf1o 5211  cfv 5212  (class class class)co 5869  Fincfn 6734  cc 7800  0cc0 7802  1c1 7803  cn 8908  cz 9242  cuz 9517  ...cfz 9995  chash 10739  Σcsu 11345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346
This theorem is referenced by:  isumss2  11385
  Copyright terms: Public domain W3C validator