| Step | Hyp | Ref
| Expression |
| 1 | | fsumss.1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 2 | | sseq0 3493 |
. . . . . 6
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
| 3 | 1, 2 | sylan 283 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 = ∅) → 𝐴 = ∅) |
| 4 | 3 | sumeq1d 11548 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 = ∅) → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ ∅ 𝐶) |
| 5 | | simpr 110 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 = ∅) → 𝐵 = ∅) |
| 6 | 5 | sumeq1d 11548 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 = ∅) → Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑘 ∈ ∅ 𝐶) |
| 7 | 4, 6 | eqtr4d 2232 |
. . 3
⊢ ((𝜑 ∧ 𝐵 = ∅) → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
| 8 | 7 | ex 115 |
. 2
⊢ (𝜑 → (𝐵 = ∅ → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶)) |
| 9 | | cnvimass 5033 |
. . . . . . . . 9
⊢ (◡𝑓 “ 𝐴) ⊆ dom 𝑓 |
| 10 | | simprr 531 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵) |
| 11 | | f1of 5507 |
. . . . . . . . . 10
⊢ (𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 → 𝑓:(1...(♯‘𝐵))⟶𝐵) |
| 12 | 10, 11 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → 𝑓:(1...(♯‘𝐵))⟶𝐵) |
| 13 | 9, 12 | fssdm 5425 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (◡𝑓 “ 𝐴) ⊆ (1...(♯‘𝐵))) |
| 14 | 12 | ffnd 5411 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → 𝑓 Fn (1...(♯‘𝐵))) |
| 15 | | elpreima 5684 |
. . . . . . . . . . . 12
⊢ (𝑓 Fn (1...(♯‘𝐵)) → (𝑛 ∈ (◡𝑓 “ 𝐴) ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓‘𝑛) ∈ 𝐴))) |
| 16 | 14, 15 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (𝑛 ∈ (◡𝑓 “ 𝐴) ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓‘𝑛) ∈ 𝐴))) |
| 17 | 12 | ffvelcdmda 5700 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ (1...(♯‘𝐵))) → (𝑓‘𝑛) ∈ 𝐵) |
| 18 | 17 | ex 115 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (𝑛 ∈ (1...(♯‘𝐵)) → (𝑓‘𝑛) ∈ 𝐵)) |
| 19 | 18 | adantrd 279 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → ((𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓‘𝑛) ∈ 𝐴) → (𝑓‘𝑛) ∈ 𝐵)) |
| 20 | 16, 19 | sylbid 150 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (𝑛 ∈ (◡𝑓 “ 𝐴) → (𝑓‘𝑛) ∈ 𝐵)) |
| 21 | 20 | imp 124 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ (◡𝑓 “ 𝐴)) → (𝑓‘𝑛) ∈ 𝐵) |
| 22 | | fsumss.2 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 23 | 22 | ex 115 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ)) |
| 24 | 23 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ)) |
| 25 | | eldif 3166 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (𝐵 ∖ 𝐴) ↔ (𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴)) |
| 26 | | fsumss.3 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) |
| 27 | | 0cn 8035 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℂ |
| 28 | 26, 27 | eqeltrdi 2287 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 ∈ ℂ) |
| 29 | 25, 28 | sylan2br 288 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴)) → 𝐶 ∈ ℂ) |
| 30 | 29 | expr 375 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (¬ 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ)) |
| 31 | | eleq1w 2257 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) |
| 32 | 31 | dcbid 839 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑘 → (DECID 𝑗 ∈ 𝐴 ↔ DECID 𝑘 ∈ 𝐴)) |
| 33 | | fisumss.adc |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑗 ∈ 𝐵 DECID 𝑗 ∈ 𝐴) |
| 34 | 33 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ∀𝑗 ∈ 𝐵 DECID 𝑗 ∈ 𝐴) |
| 35 | | simpr 110 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝑘 ∈ 𝐵) |
| 36 | 32, 34, 35 | rspcdva 2873 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → DECID 𝑘 ∈ 𝐴) |
| 37 | | exmiddc 837 |
. . . . . . . . . . . . . 14
⊢
(DECID 𝑘 ∈ 𝐴 → (𝑘 ∈ 𝐴 ∨ ¬ 𝑘 ∈ 𝐴)) |
| 38 | 36, 37 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑘 ∈ 𝐴 ∨ ¬ 𝑘 ∈ 𝐴)) |
| 39 | 24, 30, 38 | mpjaod 719 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
| 40 | 39 | fmpttd 5720 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ 𝐵 ↦ 𝐶):𝐵⟶ℂ) |
| 41 | 40 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (𝑘 ∈ 𝐵 ↦ 𝐶):𝐵⟶ℂ) |
| 42 | 41 | ffvelcdmda 5700 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ (𝑓‘𝑛) ∈ 𝐵) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛)) ∈ ℂ) |
| 43 | 21, 42 | syldan 282 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ (◡𝑓 “ 𝐴)) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛)) ∈ ℂ) |
| 44 | | eldifi 3286 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
((1...(♯‘𝐵))
∖ (◡𝑓 “ 𝐴)) → 𝑛 ∈ (1...(♯‘𝐵))) |
| 45 | 44, 17 | sylan2 286 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → (𝑓‘𝑛) ∈ 𝐵) |
| 46 | | eldifn 3287 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈
((1...(♯‘𝐵))
∖ (◡𝑓 “ 𝐴)) → ¬ 𝑛 ∈ (◡𝑓 “ 𝐴)) |
| 47 | 46 | adantl 277 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → ¬ 𝑛 ∈ (◡𝑓 “ 𝐴)) |
| 48 | 16 | adantr 276 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → (𝑛 ∈ (◡𝑓 “ 𝐴) ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓‘𝑛) ∈ 𝐴))) |
| 49 | 44 | adantl 277 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → 𝑛 ∈ (1...(♯‘𝐵))) |
| 50 | 49 | biantrurd 305 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → ((𝑓‘𝑛) ∈ 𝐴 ↔ (𝑛 ∈ (1...(♯‘𝐵)) ∧ (𝑓‘𝑛) ∈ 𝐴))) |
| 51 | 48, 50 | bitr4d 191 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → (𝑛 ∈ (◡𝑓 “ 𝐴) ↔ (𝑓‘𝑛) ∈ 𝐴)) |
| 52 | 47, 51 | mtbid 673 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → ¬ (𝑓‘𝑛) ∈ 𝐴) |
| 53 | 45, 52 | eldifd 3167 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → (𝑓‘𝑛) ∈ (𝐵 ∖ 𝐴)) |
| 54 | | difss 3290 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∖ 𝐴) ⊆ 𝐵 |
| 55 | | resmpt 4995 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∖ 𝐴) ⊆ 𝐵 → ((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ (𝐵 ∖ 𝐴)) = (𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)) |
| 56 | 54, 55 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ (𝐵 ∖ 𝐴)) = (𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶) |
| 57 | 56 | fveq1i 5562 |
. . . . . . . . . . 11
⊢ (((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ (𝐵 ∖ 𝐴))‘(𝑓‘𝑛)) = ((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) |
| 58 | | fvres 5585 |
. . . . . . . . . . 11
⊢ ((𝑓‘𝑛) ∈ (𝐵 ∖ 𝐴) → (((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ (𝐵 ∖ 𝐴))‘(𝑓‘𝑛)) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
| 59 | 57, 58 | eqtr3id 2243 |
. . . . . . . . . 10
⊢ ((𝑓‘𝑛) ∈ (𝐵 ∖ 𝐴) → ((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
| 60 | 53, 59 | syl 14 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → ((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
| 61 | | c0ex 8037 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
V |
| 62 | 61 | elsn2 3657 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∈ {0} ↔ 𝐶 = 0) |
| 63 | 26, 62 | sylibr 134 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 ∈ {0}) |
| 64 | 63 | fmpttd 5720 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶):(𝐵 ∖ 𝐴)⟶{0}) |
| 65 | 64 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → (𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶):(𝐵 ∖ 𝐴)⟶{0}) |
| 66 | 65, 53 | ffvelcdmd 5701 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → ((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) ∈ {0}) |
| 67 | | elsni 3641 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) ∈ {0} → ((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) = 0) |
| 68 | 66, 67 | syl 14 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → ((𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)‘(𝑓‘𝑛)) = 0) |
| 69 | 60, 68 | eqtr3d 2231 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ ((1...(♯‘𝐵)) ∖ (◡𝑓 “ 𝐴))) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛)) = 0) |
| 70 | | eleq1 2259 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝑓‘𝑢) → (𝑗 ∈ 𝐴 ↔ (𝑓‘𝑢) ∈ 𝐴)) |
| 71 | 70 | dcbid 839 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝑓‘𝑢) → (DECID 𝑗 ∈ 𝐴 ↔ DECID (𝑓‘𝑢) ∈ 𝐴)) |
| 72 | 33 | ad3antrrr 492 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ∈
(1...(♯‘𝐵)))
→ ∀𝑗 ∈
𝐵 DECID
𝑗 ∈ 𝐴) |
| 73 | 12 | ad2antrr 488 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ∈
(1...(♯‘𝐵)))
→ 𝑓:(1...(♯‘𝐵))⟶𝐵) |
| 74 | | simpr 110 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ∈
(1...(♯‘𝐵)))
→ 𝑢 ∈
(1...(♯‘𝐵))) |
| 75 | 73, 74 | ffvelcdmd 5701 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ∈
(1...(♯‘𝐵)))
→ (𝑓‘𝑢) ∈ 𝐵) |
| 76 | 71, 72, 75 | rspcdva 2873 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ∈
(1...(♯‘𝐵)))
→ DECID (𝑓‘𝑢) ∈ 𝐴) |
| 77 | 10 | ad2antrr 488 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ∈
(1...(♯‘𝐵)))
→ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵) |
| 78 | | f1ofun 5509 |
. . . . . . . . . . . . . 14
⊢ (𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 → Fun 𝑓) |
| 79 | 77, 78 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ∈
(1...(♯‘𝐵)))
→ Fun 𝑓) |
| 80 | | f1odm 5511 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 → dom 𝑓 = (1...(♯‘𝐵))) |
| 81 | 77, 80 | syl 14 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ∈
(1...(♯‘𝐵)))
→ dom 𝑓 =
(1...(♯‘𝐵))) |
| 82 | 74, 81 | eleqtrrd 2276 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ∈
(1...(♯‘𝐵)))
→ 𝑢 ∈ dom 𝑓) |
| 83 | | fvimacnv 5680 |
. . . . . . . . . . . . 13
⊢ ((Fun
𝑓 ∧ 𝑢 ∈ dom 𝑓) → ((𝑓‘𝑢) ∈ 𝐴 ↔ 𝑢 ∈ (◡𝑓 “ 𝐴))) |
| 84 | 79, 82, 83 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ∈
(1...(♯‘𝐵)))
→ ((𝑓‘𝑢) ∈ 𝐴 ↔ 𝑢 ∈ (◡𝑓 “ 𝐴))) |
| 85 | 84 | dcbid 839 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ∈
(1...(♯‘𝐵)))
→ (DECID (𝑓‘𝑢) ∈ 𝐴 ↔ DECID 𝑢 ∈ (◡𝑓 “ 𝐴))) |
| 86 | 76, 85 | mpbid 147 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ 𝑢 ∈
(1...(♯‘𝐵)))
→ DECID 𝑢 ∈ (◡𝑓 “ 𝐴)) |
| 87 | | elpreima 5684 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 Fn (1...(♯‘𝐵)) → (𝑢 ∈ (◡𝑓 “ 𝐴) ↔ (𝑢 ∈ (1...(♯‘𝐵)) ∧ (𝑓‘𝑢) ∈ 𝐴))) |
| 88 | | simpl 109 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈
(1...(♯‘𝐵))
∧ (𝑓‘𝑢) ∈ 𝐴) → 𝑢 ∈ (1...(♯‘𝐵))) |
| 89 | 87, 88 | biimtrdi 163 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 Fn (1...(♯‘𝐵)) → (𝑢 ∈ (◡𝑓 “ 𝐴) → 𝑢 ∈ (1...(♯‘𝐵)))) |
| 90 | 89 | con3d 632 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 Fn (1...(♯‘𝐵)) → (¬ 𝑢 ∈
(1...(♯‘𝐵))
→ ¬ 𝑢 ∈
(◡𝑓 “ 𝐴))) |
| 91 | 14, 90 | syl 14 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (¬ 𝑢 ∈
(1...(♯‘𝐵))
→ ¬ 𝑢 ∈
(◡𝑓 “ 𝐴))) |
| 92 | 91 | adantr 276 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑢 ∈ (ℤ≥‘1))
→ (¬ 𝑢 ∈
(1...(♯‘𝐵))
→ ¬ 𝑢 ∈
(◡𝑓 “ 𝐴))) |
| 93 | 92 | imp 124 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ ¬ 𝑢 ∈
(1...(♯‘𝐵)))
→ ¬ 𝑢 ∈
(◡𝑓 “ 𝐴)) |
| 94 | 93 | olcd 735 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ ¬ 𝑢 ∈
(1...(♯‘𝐵)))
→ (𝑢 ∈ (◡𝑓 “ 𝐴) ∨ ¬ 𝑢 ∈ (◡𝑓 “ 𝐴))) |
| 95 | | df-dc 836 |
. . . . . . . . . . 11
⊢
(DECID 𝑢 ∈ (◡𝑓 “ 𝐴) ↔ (𝑢 ∈ (◡𝑓 “ 𝐴) ∨ ¬ 𝑢 ∈ (◡𝑓 “ 𝐴))) |
| 96 | 94, 95 | sylibr 134 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑢 ∈ (ℤ≥‘1))
∧ ¬ 𝑢 ∈
(1...(♯‘𝐵)))
→ DECID 𝑢 ∈ (◡𝑓 “ 𝐴)) |
| 97 | | eluzelz 9627 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈
(ℤ≥‘1) → 𝑢 ∈ ℤ) |
| 98 | 97 | adantl 277 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑢 ∈ (ℤ≥‘1))
→ 𝑢 ∈
ℤ) |
| 99 | | 1zzd 9370 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑢 ∈ (ℤ≥‘1))
→ 1 ∈ ℤ) |
| 100 | | simplrl 535 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑢 ∈ (ℤ≥‘1))
→ (♯‘𝐵)
∈ ℕ) |
| 101 | 100 | nnzd 9464 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑢 ∈ (ℤ≥‘1))
→ (♯‘𝐵)
∈ ℤ) |
| 102 | | fzdcel 10132 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∈ ℤ ∧ 1 ∈
ℤ ∧ (♯‘𝐵) ∈ ℤ) →
DECID 𝑢
∈ (1...(♯‘𝐵))) |
| 103 | 98, 99, 101, 102 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑢 ∈ (ℤ≥‘1))
→ DECID 𝑢 ∈ (1...(♯‘𝐵))) |
| 104 | | exmiddc 837 |
. . . . . . . . . . 11
⊢
(DECID 𝑢 ∈ (1...(♯‘𝐵)) → (𝑢 ∈ (1...(♯‘𝐵)) ∨ ¬ 𝑢 ∈ (1...(♯‘𝐵)))) |
| 105 | 103, 104 | syl 14 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑢 ∈ (ℤ≥‘1))
→ (𝑢 ∈
(1...(♯‘𝐵))
∨ ¬ 𝑢 ∈
(1...(♯‘𝐵)))) |
| 106 | 86, 96, 105 | mpjaodan 799 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑢 ∈ (ℤ≥‘1))
→ DECID 𝑢 ∈ (◡𝑓 “ 𝐴)) |
| 107 | 106 | ralrimiva 2570 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → ∀𝑢 ∈
(ℤ≥‘1)DECID 𝑢 ∈ (◡𝑓 “ 𝐴)) |
| 108 | | 1zzd 9370 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → 1 ∈
ℤ) |
| 109 | | fzssuz 10157 |
. . . . . . . . 9
⊢
(1...(♯‘𝐵)) ⊆
(ℤ≥‘1) |
| 110 | 109 | a1i 9 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) →
(1...(♯‘𝐵))
⊆ (ℤ≥‘1)) |
| 111 | 103 | ralrimiva 2570 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → ∀𝑢 ∈
(ℤ≥‘1)DECID 𝑢 ∈ (1...(♯‘𝐵))) |
| 112 | 13, 43, 69, 107, 108, 110, 111 | isumss 11573 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → Σ𝑛 ∈ (◡𝑓 “ 𝐴)((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛)) = Σ𝑛 ∈ (1...(♯‘𝐵))((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
| 113 | 1 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑚 ∈ 𝐴) → 𝐴 ⊆ 𝐵) |
| 114 | 113 | resmptd 4998 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) = (𝑘 ∈ 𝐴 ↦ 𝐶)) |
| 115 | 114 | fveq1d 5563 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑚 ∈ 𝐴) → (((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴)‘𝑚) = ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚)) |
| 116 | | fvres 5585 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ 𝐴 → (((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴)‘𝑚) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚)) |
| 117 | 116 | adantl 277 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑚 ∈ 𝐴) → (((𝑘 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴)‘𝑚) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚)) |
| 118 | 115, 117 | eqtr3d 2231 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚)) |
| 119 | 118 | sumeq2dv 11550 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚)) |
| 120 | | fveq2 5561 |
. . . . . . . . 9
⊢ (𝑚 = (𝑓‘𝑛) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = ((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
| 121 | 1 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → 𝐴 ⊆ 𝐵) |
| 122 | | fsumss.4 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 123 | | ssfidc 7007 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ ∀𝑗 ∈ 𝐵 DECID 𝑗 ∈ 𝐴) → 𝐴 ∈ Fin) |
| 124 | 122, 1, 33, 123 | syl3anc 1249 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 125 | 124 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → 𝐴 ∈ Fin) |
| 126 | 121, 10, 125 | preimaf1ofi 7026 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (◡𝑓 “ 𝐴) ∈ Fin) |
| 127 | | f1of1 5506 |
. . . . . . . . . . . 12
⊢ (𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 → 𝑓:(1...(♯‘𝐵))–1-1→𝐵) |
| 128 | 10, 127 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → 𝑓:(1...(♯‘𝐵))–1-1→𝐵) |
| 129 | | f1ores 5522 |
. . . . . . . . . . 11
⊢ ((𝑓:(1...(♯‘𝐵))–1-1→𝐵 ∧ (◡𝑓 “ 𝐴) ⊆ (1...(♯‘𝐵))) → (𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→(𝑓 “ (◡𝑓 “ 𝐴))) |
| 130 | 128, 13, 129 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→(𝑓 “ (◡𝑓 “ 𝐴))) |
| 131 | | f1ofo 5514 |
. . . . . . . . . . . . 13
⊢ (𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 → 𝑓:(1...(♯‘𝐵))–onto→𝐵) |
| 132 | 10, 131 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → 𝑓:(1...(♯‘𝐵))–onto→𝐵) |
| 133 | | foimacnv 5525 |
. . . . . . . . . . . 12
⊢ ((𝑓:(1...(♯‘𝐵))–onto→𝐵 ∧ 𝐴 ⊆ 𝐵) → (𝑓 “ (◡𝑓 “ 𝐴)) = 𝐴) |
| 134 | 132, 121,
133 | syl2anc 411 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (𝑓 “ (◡𝑓 “ 𝐴)) = 𝐴) |
| 135 | | f1oeq3 5497 |
. . . . . . . . . . 11
⊢ ((𝑓 “ (◡𝑓 “ 𝐴)) = 𝐴 → ((𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→(𝑓 “ (◡𝑓 “ 𝐴)) ↔ (𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→𝐴)) |
| 136 | 134, 135 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → ((𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→(𝑓 “ (◡𝑓 “ 𝐴)) ↔ (𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→𝐴)) |
| 137 | 130, 136 | mpbid 147 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (𝑓 ↾ (◡𝑓 “ 𝐴)):(◡𝑓 “ 𝐴)–1-1-onto→𝐴) |
| 138 | | fvres 5585 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (◡𝑓 “ 𝐴) → ((𝑓 ↾ (◡𝑓 “ 𝐴))‘𝑛) = (𝑓‘𝑛)) |
| 139 | 138 | adantl 277 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ (◡𝑓 “ 𝐴)) → ((𝑓 ↾ (◡𝑓 “ 𝐴))‘𝑛) = (𝑓‘𝑛)) |
| 140 | 121 | sselda 3184 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑚 ∈ 𝐴) → 𝑚 ∈ 𝐵) |
| 141 | 41 | ffvelcdmda 5700 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑚 ∈ 𝐵) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) ∈ ℂ) |
| 142 | 140, 141 | syldan 282 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑚 ∈ 𝐴) → ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) ∈ ℂ) |
| 143 | 120, 126,
137, 139, 142 | fsumf1o 11572 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = Σ𝑛 ∈ (◡𝑓 “ 𝐴)((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
| 144 | 119, 143 | eqtrd 2229 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = Σ𝑛 ∈ (◡𝑓 “ 𝐴)((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
| 145 | | simprl 529 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (♯‘𝐵) ∈
ℕ) |
| 146 | 145 | nnzd 9464 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → (♯‘𝐵) ∈
ℤ) |
| 147 | 108, 146 | fzfigd 10540 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) →
(1...(♯‘𝐵))
∈ Fin) |
| 148 | | eqidd 2197 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) ∧ 𝑛 ∈ (1...(♯‘𝐵))) → (𝑓‘𝑛) = (𝑓‘𝑛)) |
| 149 | 120, 147,
10, 148, 141 | fsumf1o 11572 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → Σ𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = Σ𝑛 ∈ (1...(♯‘𝐵))((𝑘 ∈ 𝐵 ↦ 𝐶)‘(𝑓‘𝑛))) |
| 150 | 112, 144,
149 | 3eqtr4d 2239 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = Σ𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚)) |
| 151 | 22 | ralrimiva 2570 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐶 ∈ ℂ) |
| 152 | | sumfct 11556 |
. . . . . . . 8
⊢
(∀𝑘 ∈
𝐴 𝐶 ∈ ℂ → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = Σ𝑘 ∈ 𝐴 𝐶) |
| 153 | 151, 152 | syl 14 |
. . . . . . 7
⊢ (𝜑 → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = Σ𝑘 ∈ 𝐴 𝐶) |
| 154 | 153 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → Σ𝑚 ∈ 𝐴 ((𝑘 ∈ 𝐴 ↦ 𝐶)‘𝑚) = Σ𝑘 ∈ 𝐴 𝐶) |
| 155 | 22 | adantlr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 156 | | simpll 527 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝐴) → 𝜑) |
| 157 | | simplr 528 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐵) |
| 158 | | simpr 110 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝐴) → ¬ 𝑘 ∈ 𝐴) |
| 159 | 157, 158 | eldifd 3167 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝐴) → 𝑘 ∈ (𝐵 ∖ 𝐴)) |
| 160 | 156, 159,
26 | syl2anc 411 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝐴) → 𝐶 = 0) |
| 161 | | 0cnd 8036 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝐴) → 0 ∈ ℂ) |
| 162 | 160, 161 | eqeltrd 2273 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ ¬ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 163 | 155, 162,
38 | mpjaodan 799 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
| 164 | 163 | ralrimiva 2570 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
| 165 | | sumfct 11556 |
. . . . . . . 8
⊢
(∀𝑘 ∈
𝐵 𝐶 ∈ ℂ → Σ𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = Σ𝑘 ∈ 𝐵 𝐶) |
| 166 | 164, 165 | syl 14 |
. . . . . . 7
⊢ (𝜑 → Σ𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = Σ𝑘 ∈ 𝐵 𝐶) |
| 167 | 166 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → Σ𝑚 ∈ 𝐵 ((𝑘 ∈ 𝐵 ↦ 𝐶)‘𝑚) = Σ𝑘 ∈ 𝐵 𝐶) |
| 168 | 150, 154,
167 | 3eqtr3d 2237 |
. . . . 5
⊢ ((𝜑 ∧ ((♯‘𝐵) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵)) → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
| 169 | 168 | expr 375 |
. . . 4
⊢ ((𝜑 ∧ (♯‘𝐵) ∈ ℕ) → (𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶)) |
| 170 | 169 | exlimdv 1833 |
. . 3
⊢ ((𝜑 ∧ (♯‘𝐵) ∈ ℕ) →
(∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶)) |
| 171 | 170 | expimpd 363 |
. 2
⊢ (𝜑 → (((♯‘𝐵) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵) → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶)) |
| 172 | | fz1f1o 11557 |
. . 3
⊢ (𝐵 ∈ Fin → (𝐵 = ∅ ∨
((♯‘𝐵) ∈
ℕ ∧ ∃𝑓
𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵))) |
| 173 | 122, 172 | syl 14 |
. 2
⊢ (𝜑 → (𝐵 = ∅ ∨ ((♯‘𝐵) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝐵))–1-1-onto→𝐵))) |
| 174 | 8, 171, 173 | mpjaod 719 |
1
⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |