Proof of Theorem f1oresrab
| Step | Hyp | Ref
 | Expression | 
| 1 |   | f1oresrab.2 | 
. . . 4
⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) | 
| 2 |   | f1ofun 5506 | 
. . . 4
⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) | 
| 3 |   | funcnvcnv 5317 | 
. . . 4
⊢ (Fun
𝐹 → Fun ◡◡𝐹) | 
| 4 | 1, 2, 3 | 3syl 17 | 
. . 3
⊢ (𝜑 → Fun ◡◡𝐹) | 
| 5 |   | f1ocnv 5517 | 
. . . . . . 7
⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | 
| 6 | 1, 5 | syl 14 | 
. . . . . 6
⊢ (𝜑 → ◡𝐹:𝐵–1-1-onto→𝐴) | 
| 7 |   | f1of1 5503 | 
. . . . . 6
⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵–1-1→𝐴) | 
| 8 | 6, 7 | syl 14 | 
. . . . 5
⊢ (𝜑 → ◡𝐹:𝐵–1-1→𝐴) | 
| 9 |   | ssrab2 3268 | 
. . . . 5
⊢ {𝑦 ∈ 𝐵 ∣ 𝜒} ⊆ 𝐵 | 
| 10 |   | f1ores 5519 | 
. . . . 5
⊢ ((◡𝐹:𝐵–1-1→𝐴 ∧ {𝑦 ∈ 𝐵 ∣ 𝜒} ⊆ 𝐵) → (◡𝐹 ↾ {𝑦 ∈ 𝐵 ∣ 𝜒}):{𝑦 ∈ 𝐵 ∣ 𝜒}–1-1-onto→(◡𝐹 “ {𝑦 ∈ 𝐵 ∣ 𝜒})) | 
| 11 | 8, 9, 10 | sylancl 413 | 
. . . 4
⊢ (𝜑 → (◡𝐹 ↾ {𝑦 ∈ 𝐵 ∣ 𝜒}):{𝑦 ∈ 𝐵 ∣ 𝜒}–1-1-onto→(◡𝐹 “ {𝑦 ∈ 𝐵 ∣ 𝜒})) | 
| 12 |   | f1oresrab.1 | 
. . . . . . 7
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | 
| 13 | 12 | mptpreima 5163 | 
. . . . . 6
⊢ (◡𝐹 “ {𝑦 ∈ 𝐵 ∣ 𝜒}) = {𝑥 ∈ 𝐴 ∣ 𝐶 ∈ {𝑦 ∈ 𝐵 ∣ 𝜒}} | 
| 14 |   | f1oresrab.3 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → (𝜒 ↔ 𝜓)) | 
| 15 | 14 | 3expia 1207 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 = 𝐶 → (𝜒 ↔ 𝜓))) | 
| 16 | 15 | alrimiv 1888 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦(𝑦 = 𝐶 → (𝜒 ↔ 𝜓))) | 
| 17 |   | f1of 5504 | 
. . . . . . . . . . 11
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) | 
| 18 | 1, 17 | syl 14 | 
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | 
| 19 | 12 | fmpt 5712 | 
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) | 
| 20 | 18, 19 | sylibr 134 | 
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) | 
| 21 | 20 | r19.21bi 2585 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) | 
| 22 |   | elrab3t 2919 | 
. . . . . . . 8
⊢
((∀𝑦(𝑦 = 𝐶 → (𝜒 ↔ 𝜓)) ∧ 𝐶 ∈ 𝐵) → (𝐶 ∈ {𝑦 ∈ 𝐵 ∣ 𝜒} ↔ 𝜓)) | 
| 23 | 16, 21, 22 | syl2anc 411 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 ∈ {𝑦 ∈ 𝐵 ∣ 𝜒} ↔ 𝜓)) | 
| 24 | 23 | rabbidva 2751 | 
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐶 ∈ {𝑦 ∈ 𝐵 ∣ 𝜒}} = {𝑥 ∈ 𝐴 ∣ 𝜓}) | 
| 25 | 13, 24 | eqtrid 2241 | 
. . . . 5
⊢ (𝜑 → (◡𝐹 “ {𝑦 ∈ 𝐵 ∣ 𝜒}) = {𝑥 ∈ 𝐴 ∣ 𝜓}) | 
| 26 |   | f1oeq3 5494 | 
. . . . 5
⊢ ((◡𝐹 “ {𝑦 ∈ 𝐵 ∣ 𝜒}) = {𝑥 ∈ 𝐴 ∣ 𝜓} → ((◡𝐹 ↾ {𝑦 ∈ 𝐵 ∣ 𝜒}):{𝑦 ∈ 𝐵 ∣ 𝜒}–1-1-onto→(◡𝐹 “ {𝑦 ∈ 𝐵 ∣ 𝜒}) ↔ (◡𝐹 ↾ {𝑦 ∈ 𝐵 ∣ 𝜒}):{𝑦 ∈ 𝐵 ∣ 𝜒}–1-1-onto→{𝑥 ∈ 𝐴 ∣ 𝜓})) | 
| 27 | 25, 26 | syl 14 | 
. . . 4
⊢ (𝜑 → ((◡𝐹 ↾ {𝑦 ∈ 𝐵 ∣ 𝜒}):{𝑦 ∈ 𝐵 ∣ 𝜒}–1-1-onto→(◡𝐹 “ {𝑦 ∈ 𝐵 ∣ 𝜒}) ↔ (◡𝐹 ↾ {𝑦 ∈ 𝐵 ∣ 𝜒}):{𝑦 ∈ 𝐵 ∣ 𝜒}–1-1-onto→{𝑥 ∈ 𝐴 ∣ 𝜓})) | 
| 28 | 11, 27 | mpbid 147 | 
. . 3
⊢ (𝜑 → (◡𝐹 ↾ {𝑦 ∈ 𝐵 ∣ 𝜒}):{𝑦 ∈ 𝐵 ∣ 𝜒}–1-1-onto→{𝑥 ∈ 𝐴 ∣ 𝜓}) | 
| 29 |   | f1orescnv 5520 | 
. . 3
⊢ ((Fun
◡◡𝐹 ∧ (◡𝐹 ↾ {𝑦 ∈ 𝐵 ∣ 𝜒}):{𝑦 ∈ 𝐵 ∣ 𝜒}–1-1-onto→{𝑥 ∈ 𝐴 ∣ 𝜓}) → (◡◡𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}):{𝑥 ∈ 𝐴 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) | 
| 30 | 4, 28, 29 | syl2anc 411 | 
. 2
⊢ (𝜑 → (◡◡𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}):{𝑥 ∈ 𝐴 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) | 
| 31 |   | rescnvcnv 5132 | 
. . 3
⊢ (◡◡𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}) = (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}) | 
| 32 |   | f1oeq1 5492 | 
. . 3
⊢ ((◡◡𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}) = (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}) → ((◡◡𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}):{𝑥 ∈ 𝐴 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒} ↔ (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}):{𝑥 ∈ 𝐴 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒})) | 
| 33 | 31, 32 | ax-mp 5 | 
. 2
⊢ ((◡◡𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}):{𝑥 ∈ 𝐴 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒} ↔ (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}):{𝑥 ∈ 𝐴 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) | 
| 34 | 30, 33 | sylib 122 | 
1
⊢ (𝜑 → (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}):{𝑥 ∈ 𝐴 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |