ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oresrab GIF version

Theorem f1oresrab 5745
Description: Build a bijection between restricted abstract builders, given a bijection between the base classes, deduction version. (Contributed by Thierry Arnoux, 17-Aug-2018.)
Hypotheses
Ref Expression
f1oresrab.1 𝐹 = (𝑥𝐴𝐶)
f1oresrab.2 (𝜑𝐹:𝐴1-1-onto𝐵)
f1oresrab.3 ((𝜑𝑥𝐴𝑦 = 𝐶) → (𝜒𝜓))
Assertion
Ref Expression
f1oresrab (𝜑 → (𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝜑,𝑥,𝑦   𝜓,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐶(𝑥)   𝐹(𝑥,𝑦)

Proof of Theorem f1oresrab
StepHypRef Expression
1 f1oresrab.2 . . . 4 (𝜑𝐹:𝐴1-1-onto𝐵)
2 f1ofun 5524 . . . 4 (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
3 funcnvcnv 5333 . . . 4 (Fun 𝐹 → Fun 𝐹)
41, 2, 33syl 17 . . 3 (𝜑 → Fun 𝐹)
5 f1ocnv 5535 . . . . . . 7 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
61, 5syl 14 . . . . . 6 (𝜑𝐹:𝐵1-1-onto𝐴)
7 f1of1 5521 . . . . . 6 (𝐹:𝐵1-1-onto𝐴𝐹:𝐵1-1𝐴)
86, 7syl 14 . . . . 5 (𝜑𝐹:𝐵1-1𝐴)
9 ssrab2 3278 . . . . 5 {𝑦𝐵𝜒} ⊆ 𝐵
10 f1ores 5537 . . . . 5 ((𝐹:𝐵1-1𝐴 ∧ {𝑦𝐵𝜒} ⊆ 𝐵) → (𝐹 ↾ {𝑦𝐵𝜒}):{𝑦𝐵𝜒}–1-1-onto→(𝐹 “ {𝑦𝐵𝜒}))
118, 9, 10sylancl 413 . . . 4 (𝜑 → (𝐹 ↾ {𝑦𝐵𝜒}):{𝑦𝐵𝜒}–1-1-onto→(𝐹 “ {𝑦𝐵𝜒}))
12 f1oresrab.1 . . . . . . 7 𝐹 = (𝑥𝐴𝐶)
1312mptpreima 5176 . . . . . 6 (𝐹 “ {𝑦𝐵𝜒}) = {𝑥𝐴𝐶 ∈ {𝑦𝐵𝜒}}
14 f1oresrab.3 . . . . . . . . . 10 ((𝜑𝑥𝐴𝑦 = 𝐶) → (𝜒𝜓))
15143expia 1208 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑦 = 𝐶 → (𝜒𝜓)))
1615alrimiv 1897 . . . . . . . 8 ((𝜑𝑥𝐴) → ∀𝑦(𝑦 = 𝐶 → (𝜒𝜓)))
17 f1of 5522 . . . . . . . . . . 11 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
181, 17syl 14 . . . . . . . . . 10 (𝜑𝐹:𝐴𝐵)
1912fmpt 5730 . . . . . . . . . 10 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
2018, 19sylibr 134 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴 𝐶𝐵)
2120r19.21bi 2594 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶𝐵)
22 elrab3t 2928 . . . . . . . 8 ((∀𝑦(𝑦 = 𝐶 → (𝜒𝜓)) ∧ 𝐶𝐵) → (𝐶 ∈ {𝑦𝐵𝜒} ↔ 𝜓))
2316, 21, 22syl2anc 411 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐶 ∈ {𝑦𝐵𝜒} ↔ 𝜓))
2423rabbidva 2760 . . . . . 6 (𝜑 → {𝑥𝐴𝐶 ∈ {𝑦𝐵𝜒}} = {𝑥𝐴𝜓})
2513, 24eqtrid 2250 . . . . 5 (𝜑 → (𝐹 “ {𝑦𝐵𝜒}) = {𝑥𝐴𝜓})
26 f1oeq3 5512 . . . . 5 ((𝐹 “ {𝑦𝐵𝜒}) = {𝑥𝐴𝜓} → ((𝐹 ↾ {𝑦𝐵𝜒}):{𝑦𝐵𝜒}–1-1-onto→(𝐹 “ {𝑦𝐵𝜒}) ↔ (𝐹 ↾ {𝑦𝐵𝜒}):{𝑦𝐵𝜒}–1-1-onto→{𝑥𝐴𝜓}))
2725, 26syl 14 . . . 4 (𝜑 → ((𝐹 ↾ {𝑦𝐵𝜒}):{𝑦𝐵𝜒}–1-1-onto→(𝐹 “ {𝑦𝐵𝜒}) ↔ (𝐹 ↾ {𝑦𝐵𝜒}):{𝑦𝐵𝜒}–1-1-onto→{𝑥𝐴𝜓}))
2811, 27mpbid 147 . . 3 (𝜑 → (𝐹 ↾ {𝑦𝐵𝜒}):{𝑦𝐵𝜒}–1-1-onto→{𝑥𝐴𝜓})
29 f1orescnv 5538 . . 3 ((Fun 𝐹 ∧ (𝐹 ↾ {𝑦𝐵𝜒}):{𝑦𝐵𝜒}–1-1-onto→{𝑥𝐴𝜓}) → (𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒})
304, 28, 29syl2anc 411 . 2 (𝜑 → (𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒})
31 rescnvcnv 5145 . . 3 (𝐹 ↾ {𝑥𝐴𝜓}) = (𝐹 ↾ {𝑥𝐴𝜓})
32 f1oeq1 5510 . . 3 ((𝐹 ↾ {𝑥𝐴𝜓}) = (𝐹 ↾ {𝑥𝐴𝜓}) → ((𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒} ↔ (𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒}))
3331, 32ax-mp 5 . 2 ((𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒} ↔ (𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒})
3430, 33sylib 122 1 (𝜑 → (𝐹 ↾ {𝑥𝐴𝜓}):{𝑥𝐴𝜓}–1-1-onto→{𝑦𝐵𝜒})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981  wal 1371   = wceq 1373  wcel 2176  wral 2484  {crab 2488  wss 3166  cmpt 4105  ccnv 4674  cres 4677  cima 4678  Fun wfun 5265  wf 5267  1-1wf1 5268  1-1-ontowf1o 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator