Proof of Theorem f1oresrab
Step | Hyp | Ref
| Expression |
1 | | f1oresrab.2 |
. . . 4
⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) |
2 | | f1ofun 5434 |
. . . 4
⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) |
3 | | funcnvcnv 5247 |
. . . 4
⊢ (Fun
𝐹 → Fun ◡◡𝐹) |
4 | 1, 2, 3 | 3syl 17 |
. . 3
⊢ (𝜑 → Fun ◡◡𝐹) |
5 | | f1ocnv 5445 |
. . . . . . 7
⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) |
6 | 1, 5 | syl 14 |
. . . . . 6
⊢ (𝜑 → ◡𝐹:𝐵–1-1-onto→𝐴) |
7 | | f1of1 5431 |
. . . . . 6
⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵–1-1→𝐴) |
8 | 6, 7 | syl 14 |
. . . . 5
⊢ (𝜑 → ◡𝐹:𝐵–1-1→𝐴) |
9 | | ssrab2 3227 |
. . . . 5
⊢ {𝑦 ∈ 𝐵 ∣ 𝜒} ⊆ 𝐵 |
10 | | f1ores 5447 |
. . . . 5
⊢ ((◡𝐹:𝐵–1-1→𝐴 ∧ {𝑦 ∈ 𝐵 ∣ 𝜒} ⊆ 𝐵) → (◡𝐹 ↾ {𝑦 ∈ 𝐵 ∣ 𝜒}):{𝑦 ∈ 𝐵 ∣ 𝜒}–1-1-onto→(◡𝐹 “ {𝑦 ∈ 𝐵 ∣ 𝜒})) |
11 | 8, 9, 10 | sylancl 410 |
. . . 4
⊢ (𝜑 → (◡𝐹 ↾ {𝑦 ∈ 𝐵 ∣ 𝜒}):{𝑦 ∈ 𝐵 ∣ 𝜒}–1-1-onto→(◡𝐹 “ {𝑦 ∈ 𝐵 ∣ 𝜒})) |
12 | | f1oresrab.1 |
. . . . . . 7
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
13 | 12 | mptpreima 5097 |
. . . . . 6
⊢ (◡𝐹 “ {𝑦 ∈ 𝐵 ∣ 𝜒}) = {𝑥 ∈ 𝐴 ∣ 𝐶 ∈ {𝑦 ∈ 𝐵 ∣ 𝜒}} |
14 | | f1oresrab.3 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → (𝜒 ↔ 𝜓)) |
15 | 14 | 3expia 1195 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 = 𝐶 → (𝜒 ↔ 𝜓))) |
16 | 15 | alrimiv 1862 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦(𝑦 = 𝐶 → (𝜒 ↔ 𝜓))) |
17 | | f1of 5432 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) |
18 | 1, 17 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
19 | 12 | fmpt 5635 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
20 | 18, 19 | sylibr 133 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) |
21 | 20 | r19.21bi 2554 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
22 | | elrab3t 2881 |
. . . . . . . 8
⊢
((∀𝑦(𝑦 = 𝐶 → (𝜒 ↔ 𝜓)) ∧ 𝐶 ∈ 𝐵) → (𝐶 ∈ {𝑦 ∈ 𝐵 ∣ 𝜒} ↔ 𝜓)) |
23 | 16, 21, 22 | syl2anc 409 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 ∈ {𝑦 ∈ 𝐵 ∣ 𝜒} ↔ 𝜓)) |
24 | 23 | rabbidva 2714 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐶 ∈ {𝑦 ∈ 𝐵 ∣ 𝜒}} = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
25 | 13, 24 | syl5eq 2211 |
. . . . 5
⊢ (𝜑 → (◡𝐹 “ {𝑦 ∈ 𝐵 ∣ 𝜒}) = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
26 | | f1oeq3 5423 |
. . . . 5
⊢ ((◡𝐹 “ {𝑦 ∈ 𝐵 ∣ 𝜒}) = {𝑥 ∈ 𝐴 ∣ 𝜓} → ((◡𝐹 ↾ {𝑦 ∈ 𝐵 ∣ 𝜒}):{𝑦 ∈ 𝐵 ∣ 𝜒}–1-1-onto→(◡𝐹 “ {𝑦 ∈ 𝐵 ∣ 𝜒}) ↔ (◡𝐹 ↾ {𝑦 ∈ 𝐵 ∣ 𝜒}):{𝑦 ∈ 𝐵 ∣ 𝜒}–1-1-onto→{𝑥 ∈ 𝐴 ∣ 𝜓})) |
27 | 25, 26 | syl 14 |
. . . 4
⊢ (𝜑 → ((◡𝐹 ↾ {𝑦 ∈ 𝐵 ∣ 𝜒}):{𝑦 ∈ 𝐵 ∣ 𝜒}–1-1-onto→(◡𝐹 “ {𝑦 ∈ 𝐵 ∣ 𝜒}) ↔ (◡𝐹 ↾ {𝑦 ∈ 𝐵 ∣ 𝜒}):{𝑦 ∈ 𝐵 ∣ 𝜒}–1-1-onto→{𝑥 ∈ 𝐴 ∣ 𝜓})) |
28 | 11, 27 | mpbid 146 |
. . 3
⊢ (𝜑 → (◡𝐹 ↾ {𝑦 ∈ 𝐵 ∣ 𝜒}):{𝑦 ∈ 𝐵 ∣ 𝜒}–1-1-onto→{𝑥 ∈ 𝐴 ∣ 𝜓}) |
29 | | f1orescnv 5448 |
. . 3
⊢ ((Fun
◡◡𝐹 ∧ (◡𝐹 ↾ {𝑦 ∈ 𝐵 ∣ 𝜒}):{𝑦 ∈ 𝐵 ∣ 𝜒}–1-1-onto→{𝑥 ∈ 𝐴 ∣ 𝜓}) → (◡◡𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}):{𝑥 ∈ 𝐴 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |
30 | 4, 28, 29 | syl2anc 409 |
. 2
⊢ (𝜑 → (◡◡𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}):{𝑥 ∈ 𝐴 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |
31 | | rescnvcnv 5066 |
. . 3
⊢ (◡◡𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}) = (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
32 | | f1oeq1 5421 |
. . 3
⊢ ((◡◡𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}) = (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}) → ((◡◡𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}):{𝑥 ∈ 𝐴 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒} ↔ (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}):{𝑥 ∈ 𝐴 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒})) |
33 | 31, 32 | ax-mp 5 |
. 2
⊢ ((◡◡𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}):{𝑥 ∈ 𝐴 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒} ↔ (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}):{𝑥 ∈ 𝐴 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |
34 | 30, 33 | sylib 121 |
1
⊢ (𝜑 → (𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝜓}):{𝑥 ∈ 𝐴 ∣ 𝜓}–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) |