| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fihasheqf1oi | GIF version | ||
| Description: The size of two finite sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Jim Kingdon, 21-Feb-2022.) |
| Ref | Expression |
|---|---|
| fihasheqf1oi | ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → (♯‘𝐴) = (♯‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1odm 5528 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) | |
| 2 | 1 | eleq1d 2274 | . . . . 5 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (dom 𝐹 ∈ Fin ↔ 𝐴 ∈ Fin)) |
| 3 | 2 | biimparc 299 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → dom 𝐹 ∈ Fin) |
| 4 | f1ofun 5526 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) | |
| 5 | 4 | adantl 277 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → Fun 𝐹) |
| 6 | fundmfibi 7042 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)) | |
| 7 | 5, 6 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)) |
| 8 | 3, 7 | mpbird 167 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐹 ∈ Fin) |
| 9 | simpr 110 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐹:𝐴–1-1-onto→𝐵) | |
| 10 | f1oeq1 5512 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓:𝐴–1-1-onto→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) | |
| 11 | 10 | spcegv 2861 | . . 3 ⊢ (𝐹 ∈ Fin → (𝐹:𝐴–1-1-onto→𝐵 → ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) |
| 12 | 8, 9, 11 | sylc 62 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| 13 | f1ofi 7047 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐵 ∈ Fin) | |
| 14 | hasheqf1o 10932 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | |
| 15 | 13, 14 | syldan 282 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → ((♯‘𝐴) = (♯‘𝐵) ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) |
| 16 | 12, 15 | mpbird 167 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → (♯‘𝐴) = (♯‘𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∃wex 1515 ∈ wcel 2176 dom cdm 4676 Fun wfun 5266 –1-1-onto→wf1o 5271 ‘cfv 5272 Fincfn 6829 ♯chash 10922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-recs 6393 df-frec 6479 df-1o 6504 df-er 6622 df-en 6830 df-dom 6831 df-fin 6832 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 df-uz 9651 df-ihash 10923 |
| This theorem is referenced by: fihashf1rn 10935 fihasheqf1od 10936 fsum3 11731 2lgslem1 15601 |
| Copyright terms: Public domain | W3C validator |