ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fihasheqf1oi GIF version

Theorem fihasheqf1oi 10566
Description: The size of two finite sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Jim Kingdon, 21-Feb-2022.)
Assertion
Ref Expression
fihasheqf1oi ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → (♯‘𝐴) = (♯‘𝐵))

Proof of Theorem fihasheqf1oi
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1odm 5379 . . . . . 6 (𝐹:𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴)
21eleq1d 2209 . . . . 5 (𝐹:𝐴1-1-onto𝐵 → (dom 𝐹 ∈ Fin ↔ 𝐴 ∈ Fin))
32biimparc 297 . . . 4 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → dom 𝐹 ∈ Fin)
4 f1ofun 5377 . . . . . 6 (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
54adantl 275 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → Fun 𝐹)
6 fundmfibi 6835 . . . . 5 (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin))
75, 6syl 14 . . . 4 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin))
83, 7mpbird 166 . . 3 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐹 ∈ Fin)
9 simpr 109 . . 3 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐹:𝐴1-1-onto𝐵)
10 f1oeq1 5364 . . . 4 (𝑓 = 𝐹 → (𝑓:𝐴1-1-onto𝐵𝐹:𝐴1-1-onto𝐵))
1110spcegv 2777 . . 3 (𝐹 ∈ Fin → (𝐹:𝐴1-1-onto𝐵 → ∃𝑓 𝑓:𝐴1-1-onto𝐵))
128, 9, 11sylc 62 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → ∃𝑓 𝑓:𝐴1-1-onto𝐵)
13 f1ofi 6839 . . 3 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → 𝐵 ∈ Fin)
14 hasheqf1o 10563 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
1513, 14syldan 280 . 2 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → ((♯‘𝐴) = (♯‘𝐵) ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵))
1612, 15mpbird 166 1 ((𝐴 ∈ Fin ∧ 𝐹:𝐴1-1-onto𝐵) → (♯‘𝐴) = (♯‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wex 1469  wcel 1481  dom cdm 4547  Fun wfun 5125  1-1-ontowf1o 5130  cfv 5131  Fincfn 6642  chash 10553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-recs 6210  df-frec 6296  df-1o 6321  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-ihash 10554
This theorem is referenced by:  fihashf1rn  10567  fihasheqf1od  10568  fsum3  11188
  Copyright terms: Public domain W3C validator