![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fihasheqf1oi | GIF version |
Description: The size of two finite sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Jim Kingdon, 21-Feb-2022.) |
Ref | Expression |
---|---|
fihasheqf1oi | ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → (♯‘𝐴) = (♯‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1odm 5467 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) | |
2 | 1 | eleq1d 2246 | . . . . 5 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (dom 𝐹 ∈ Fin ↔ 𝐴 ∈ Fin)) |
3 | 2 | biimparc 299 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → dom 𝐹 ∈ Fin) |
4 | f1ofun 5465 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) | |
5 | 4 | adantl 277 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → Fun 𝐹) |
6 | fundmfibi 6941 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)) | |
7 | 5, 6 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)) |
8 | 3, 7 | mpbird 167 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐹 ∈ Fin) |
9 | simpr 110 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐹:𝐴–1-1-onto→𝐵) | |
10 | f1oeq1 5451 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓:𝐴–1-1-onto→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) | |
11 | 10 | spcegv 2827 | . . 3 ⊢ (𝐹 ∈ Fin → (𝐹:𝐴–1-1-onto→𝐵 → ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) |
12 | 8, 9, 11 | sylc 62 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
13 | f1ofi 6945 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐵 ∈ Fin) | |
14 | hasheqf1o 10768 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | |
15 | 13, 14 | syldan 282 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → ((♯‘𝐴) = (♯‘𝐵) ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) |
16 | 12, 15 | mpbird 167 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → (♯‘𝐴) = (♯‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∃wex 1492 ∈ wcel 2148 dom cdm 4628 Fun wfun 5212 –1-1-onto→wf1o 5217 ‘cfv 5218 Fincfn 6743 ♯chash 10758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-recs 6309 df-frec 6395 df-1o 6420 df-er 6538 df-en 6744 df-dom 6745 df-fin 6746 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-inn 8923 df-n0 9180 df-z 9257 df-uz 9532 df-ihash 10759 |
This theorem is referenced by: fihashf1rn 10771 fihasheqf1od 10772 fsum3 11398 |
Copyright terms: Public domain | W3C validator |