| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fihasheqf1oi | GIF version | ||
| Description: The size of two finite sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Jim Kingdon, 21-Feb-2022.) |
| Ref | Expression |
|---|---|
| fihasheqf1oi | ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → (♯‘𝐴) = (♯‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1odm 5508 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → dom 𝐹 = 𝐴) | |
| 2 | 1 | eleq1d 2265 | . . . . 5 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (dom 𝐹 ∈ Fin ↔ 𝐴 ∈ Fin)) |
| 3 | 2 | biimparc 299 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → dom 𝐹 ∈ Fin) |
| 4 | f1ofun 5506 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) | |
| 5 | 4 | adantl 277 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → Fun 𝐹) |
| 6 | fundmfibi 7004 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)) | |
| 7 | 5, 6 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)) |
| 8 | 3, 7 | mpbird 167 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐹 ∈ Fin) |
| 9 | simpr 110 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐹:𝐴–1-1-onto→𝐵) | |
| 10 | f1oeq1 5492 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓:𝐴–1-1-onto→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) | |
| 11 | 10 | spcegv 2852 | . . 3 ⊢ (𝐹 ∈ Fin → (𝐹:𝐴–1-1-onto→𝐵 → ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) |
| 12 | 8, 9, 11 | sylc 62 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
| 13 | f1ofi 7009 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐵 ∈ Fin) | |
| 14 | hasheqf1o 10877 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) | |
| 15 | 13, 14 | syldan 282 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → ((♯‘𝐴) = (♯‘𝐵) ↔ ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) |
| 16 | 12, 15 | mpbird 167 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → (♯‘𝐴) = (♯‘𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1506 ∈ wcel 2167 dom cdm 4663 Fun wfun 5252 –1-1-onto→wf1o 5257 ‘cfv 5258 Fincfn 6799 ♯chash 10867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-recs 6363 df-frec 6449 df-1o 6474 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-ihash 10868 |
| This theorem is referenced by: fihashf1rn 10880 fihasheqf1od 10881 fsum3 11552 2lgslem1 15332 |
| Copyright terms: Public domain | W3C validator |