| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ofn | GIF version | ||
| Description: A one-to-one onto mapping is function on its domain. (Contributed by NM, 12-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1ofn | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1of 5568 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffn 5469 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fn wfn 5309 ⟶wf 5310 –1-1-onto→wf1o 5313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f 5318 df-f1 5319 df-f1o 5321 |
| This theorem is referenced by: f1ofun 5570 f1odm 5572 isocnv2 5929 isoini 5935 isoselem 5937 bren 6885 en1 6941 en2 6963 xpen 6994 phplem4 7004 phplem4on 7017 dif1en 7029 fiintim 7081 residfi 7095 supisolem 7163 ordiso2 7190 inresflem 7215 eldju 7223 caseinl 7246 caseinr 7247 enomnilem 7293 enmkvlem 7316 enwomnilem 7324 iseqf1olemnab 10710 hashfacen 11045 fprodssdc 12087 phimullem 12733 znleval 14602 |
| Copyright terms: Public domain | W3C validator |