ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ofn GIF version

Theorem f1ofn 5532
Description: A one-to-one onto mapping is function on its domain. (Contributed by NM, 12-Dec-2003.)
Assertion
Ref Expression
f1ofn (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)

Proof of Theorem f1ofn
StepHypRef Expression
1 f1of 5531 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
2 ffn 5432 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
31, 2syl 14 1 (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   Fn wfn 5272  wf 5273  1-1-ontowf1o 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-f 5281  df-f1 5282  df-f1o 5284
This theorem is referenced by:  f1ofun  5533  f1odm  5535  isocnv2  5891  isoini  5897  isoselem  5899  bren  6845  en1  6901  en2  6923  xpen  6954  phplem4  6964  phplem4on  6976  dif1en  6988  fiintim  7040  residfi  7054  supisolem  7122  ordiso2  7149  inresflem  7174  eldju  7182  caseinl  7205  caseinr  7206  enomnilem  7252  enmkvlem  7275  enwomnilem  7283  iseqf1olemnab  10659  hashfacen  10994  fprodssdc  11951  phimullem  12597  znleval  14465
  Copyright terms: Public domain W3C validator