ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ofn GIF version

Theorem f1ofn 5464
Description: A one-to-one onto mapping is function on its domain. (Contributed by NM, 12-Dec-2003.)
Assertion
Ref Expression
f1ofn (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)

Proof of Theorem f1ofn
StepHypRef Expression
1 f1of 5463 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
2 ffn 5367 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
31, 2syl 14 1 (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   Fn wfn 5213  wf 5214  1-1-ontowf1o 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-f 5222  df-f1 5223  df-f1o 5225
This theorem is referenced by:  f1ofun  5465  f1odm  5467  isocnv2  5815  isoini  5821  isoselem  5823  bren  6749  en1  6801  xpen  6847  phplem4  6857  phplem4on  6869  dif1en  6881  fiintim  6930  supisolem  7009  ordiso2  7036  inresflem  7061  eldju  7069  caseinl  7092  caseinr  7093  enomnilem  7138  enmkvlem  7161  enwomnilem  7169  iseqf1olemnab  10490  hashfacen  10818  fprodssdc  11600  phimullem  12227
  Copyright terms: Public domain W3C validator