ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ofn GIF version

Theorem f1ofn 5575
Description: A one-to-one onto mapping is function on its domain. (Contributed by NM, 12-Dec-2003.)
Assertion
Ref Expression
f1ofn (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)

Proof of Theorem f1ofn
StepHypRef Expression
1 f1of 5574 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
2 ffn 5473 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
31, 2syl 14 1 (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   Fn wfn 5313  wf 5314  1-1-ontowf1o 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-f 5322  df-f1 5323  df-f1o 5325
This theorem is referenced by:  f1ofun  5576  f1odm  5578  isocnv2  5942  isoini  5948  isoselem  5950  bren  6903  en1  6959  en2  6981  xpen  7014  phplem4  7024  phplem4on  7037  dif1en  7049  fiintim  7101  residfi  7115  supisolem  7183  ordiso2  7210  inresflem  7235  eldju  7243  caseinl  7266  caseinr  7267  enomnilem  7313  enmkvlem  7336  enwomnilem  7344  iseqf1olemnab  10731  hashfacen  11066  fprodssdc  12109  phimullem  12755  znleval  14625
  Copyright terms: Public domain W3C validator