Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1ofn | GIF version |
Description: A one-to-one onto mapping is function on its domain. (Contributed by NM, 12-Dec-2003.) |
Ref | Expression |
---|---|
f1ofn | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1of 5432 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | ffn 5337 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Fn wfn 5183 ⟶wf 5184 –1-1-onto→wf1o 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-f 5192 df-f1 5193 df-f1o 5195 |
This theorem is referenced by: f1ofun 5434 f1odm 5436 isocnv2 5780 isoini 5786 isoselem 5788 bren 6713 en1 6765 xpen 6811 phplem4 6821 phplem4on 6833 dif1en 6845 fiintim 6894 supisolem 6973 ordiso2 7000 inresflem 7025 eldju 7033 caseinl 7056 caseinr 7057 enomnilem 7102 enmkvlem 7125 enwomnilem 7133 iseqf1olemnab 10423 hashfacen 10749 fprodssdc 11531 phimullem 12157 |
Copyright terms: Public domain | W3C validator |