![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1ofn | GIF version |
Description: A one-to-one onto mapping is function on its domain. (Contributed by NM, 12-Dec-2003.) |
Ref | Expression |
---|---|
f1ofn | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1of 5501 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | ffn 5404 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Fn wfn 5250 ⟶wf 5251 –1-1-onto→wf1o 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-f 5259 df-f1 5260 df-f1o 5262 |
This theorem is referenced by: f1ofun 5503 f1odm 5505 isocnv2 5856 isoini 5862 isoselem 5864 bren 6803 en1 6855 xpen 6903 phplem4 6913 phplem4on 6925 dif1en 6937 fiintim 6987 residfi 7001 supisolem 7069 ordiso2 7096 inresflem 7121 eldju 7129 caseinl 7152 caseinr 7153 enomnilem 7199 enmkvlem 7222 enwomnilem 7230 iseqf1olemnab 10575 hashfacen 10910 fprodssdc 11736 phimullem 12366 znleval 14152 |
Copyright terms: Public domain | W3C validator |