ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ofn GIF version

Theorem f1ofn 5569
Description: A one-to-one onto mapping is function on its domain. (Contributed by NM, 12-Dec-2003.)
Assertion
Ref Expression
f1ofn (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)

Proof of Theorem f1ofn
StepHypRef Expression
1 f1of 5568 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
2 ffn 5469 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
31, 2syl 14 1 (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   Fn wfn 5309  wf 5310  1-1-ontowf1o 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-f 5318  df-f1 5319  df-f1o 5321
This theorem is referenced by:  f1ofun  5570  f1odm  5572  isocnv2  5929  isoini  5935  isoselem  5937  bren  6885  en1  6941  en2  6963  xpen  6994  phplem4  7004  phplem4on  7017  dif1en  7029  fiintim  7081  residfi  7095  supisolem  7163  ordiso2  7190  inresflem  7215  eldju  7223  caseinl  7246  caseinr  7247  enomnilem  7293  enmkvlem  7316  enwomnilem  7324  iseqf1olemnab  10710  hashfacen  11045  fprodssdc  12087  phimullem  12733  znleval  14602
  Copyright terms: Public domain W3C validator