| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ofn | GIF version | ||
| Description: A one-to-one onto mapping is function on its domain. (Contributed by NM, 12-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1ofn | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1of 5531 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffn 5432 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fn wfn 5272 ⟶wf 5273 –1-1-onto→wf1o 5276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f 5281 df-f1 5282 df-f1o 5284 |
| This theorem is referenced by: f1ofun 5533 f1odm 5535 isocnv2 5891 isoini 5897 isoselem 5899 bren 6845 en1 6901 en2 6923 xpen 6954 phplem4 6964 phplem4on 6976 dif1en 6988 fiintim 7040 residfi 7054 supisolem 7122 ordiso2 7149 inresflem 7174 eldju 7182 caseinl 7205 caseinr 7206 enomnilem 7252 enmkvlem 7275 enwomnilem 7283 iseqf1olemnab 10659 hashfacen 10994 fprodssdc 11951 phimullem 12597 znleval 14465 |
| Copyright terms: Public domain | W3C validator |