| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ofn | GIF version | ||
| Description: A one-to-one onto mapping is function on its domain. (Contributed by NM, 12-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1ofn | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1of 5574 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffn 5473 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fn wfn 5313 ⟶wf 5314 –1-1-onto→wf1o 5317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-f 5322 df-f1 5323 df-f1o 5325 |
| This theorem is referenced by: f1ofun 5576 f1odm 5578 isocnv2 5942 isoini 5948 isoselem 5950 bren 6903 en1 6959 en2 6981 xpen 7014 phplem4 7024 phplem4on 7037 dif1en 7049 fiintim 7101 residfi 7115 supisolem 7183 ordiso2 7210 inresflem 7235 eldju 7243 caseinl 7266 caseinr 7267 enomnilem 7313 enmkvlem 7336 enwomnilem 7344 iseqf1olemnab 10731 hashfacen 11066 fprodssdc 12109 phimullem 12755 znleval 14625 |
| Copyright terms: Public domain | W3C validator |