ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1opw GIF version

Theorem f1opw 6130
Description: A one-to-one mapping induces a one-to-one mapping on power sets. (Contributed by Stefan O'Rear, 18-Nov-2014.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
f1opw (𝐹:𝐴1-1-onto𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)):𝒫 𝐴1-1-onto→𝒫 𝐵)
Distinct variable groups:   𝐴,𝑏   𝐵,𝑏   𝐹,𝑏

Proof of Theorem f1opw
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 id 19 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1-onto𝐵)
2 dff1o3 5510 . . . 4 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴onto𝐵 ∧ Fun 𝐹))
32simprbi 275 . . 3 (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
4 vex 2766 . . . 4 𝑎 ∈ V
54funimaex 5343 . . 3 (Fun 𝐹 → (𝐹𝑎) ∈ V)
63, 5syl 14 . 2 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝑎) ∈ V)
7 f1ofun 5506 . . 3 (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
8 vex 2766 . . . 4 𝑏 ∈ V
98funimaex 5343 . . 3 (Fun 𝐹 → (𝐹𝑏) ∈ V)
107, 9syl 14 . 2 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝑏) ∈ V)
111, 6, 10f1opw2 6129 1 (𝐹:𝐴1-1-onto𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)):𝒫 𝐴1-1-onto→𝒫 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  Vcvv 2763  𝒫 cpw 3605  cmpt 4094  ccnv 4662  cima 4666  Fun wfun 5252  ontowfo 5256  1-1-ontowf1o 5257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator