![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1opw | GIF version |
Description: A one-to-one mapping induces a one-to-one mapping on power sets. (Contributed by Stefan O'Rear, 18-Nov-2014.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
f1opw | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹 “ 𝑏)):𝒫 𝐴–1-1-onto→𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1-onto→𝐵) | |
2 | dff1o3 5506 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) | |
3 | 2 | simprbi 275 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun ◡𝐹) |
4 | vex 2763 | . . . 4 ⊢ 𝑎 ∈ V | |
5 | 4 | funimaex 5339 | . . 3 ⊢ (Fun ◡𝐹 → (◡𝐹 “ 𝑎) ∈ V) |
6 | 3, 5 | syl 14 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 “ 𝑎) ∈ V) |
7 | f1ofun 5502 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) | |
8 | vex 2763 | . . . 4 ⊢ 𝑏 ∈ V | |
9 | 8 | funimaex 5339 | . . 3 ⊢ (Fun 𝐹 → (𝐹 “ 𝑏) ∈ V) |
10 | 7, 9 | syl 14 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐹 “ 𝑏) ∈ V) |
11 | 1, 6, 10 | f1opw2 6124 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹 “ 𝑏)):𝒫 𝐴–1-1-onto→𝒫 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 Vcvv 2760 𝒫 cpw 3601 ↦ cmpt 4090 ◡ccnv 4658 “ cima 4662 Fun wfun 5248 –onto→wfo 5252 –1-1-onto→wf1o 5253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |