Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1opw | GIF version |
Description: A one-to-one mapping induces a one-to-one mapping on power sets. (Contributed by Stefan O'Rear, 18-Nov-2014.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
f1opw | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹 “ 𝑏)):𝒫 𝐴–1-1-onto→𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1-onto→𝐵) | |
2 | dff1o3 5438 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) | |
3 | 2 | simprbi 273 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun ◡𝐹) |
4 | vex 2729 | . . . 4 ⊢ 𝑎 ∈ V | |
5 | 4 | funimaex 5273 | . . 3 ⊢ (Fun ◡𝐹 → (◡𝐹 “ 𝑎) ∈ V) |
6 | 3, 5 | syl 14 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 “ 𝑎) ∈ V) |
7 | f1ofun 5434 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) | |
8 | vex 2729 | . . . 4 ⊢ 𝑏 ∈ V | |
9 | 8 | funimaex 5273 | . . 3 ⊢ (Fun 𝐹 → (𝐹 “ 𝑏) ∈ V) |
10 | 7, 9 | syl 14 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐹 “ 𝑏) ∈ V) |
11 | 1, 6, 10 | f1opw2 6044 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹 “ 𝑏)):𝒫 𝐴–1-1-onto→𝒫 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 Vcvv 2726 𝒫 cpw 3559 ↦ cmpt 4043 ◡ccnv 4603 “ cima 4607 Fun wfun 5182 –onto→wfo 5186 –1-1-onto→wf1o 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |