Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1opw | GIF version |
Description: A one-to-one mapping induces a one-to-one mapping on power sets. (Contributed by Stefan O'Rear, 18-Nov-2014.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
f1opw | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹 “ 𝑏)):𝒫 𝐴–1-1-onto→𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴–1-1-onto→𝐵) | |
2 | dff1o3 5448 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–onto→𝐵 ∧ Fun ◡𝐹)) | |
3 | 2 | simprbi 273 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun ◡𝐹) |
4 | vex 2733 | . . . 4 ⊢ 𝑎 ∈ V | |
5 | 4 | funimaex 5283 | . . 3 ⊢ (Fun ◡𝐹 → (◡𝐹 “ 𝑎) ∈ V) |
6 | 3, 5 | syl 14 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (◡𝐹 “ 𝑎) ∈ V) |
7 | f1ofun 5444 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → Fun 𝐹) | |
8 | vex 2733 | . . . 4 ⊢ 𝑏 ∈ V | |
9 | 8 | funimaex 5283 | . . 3 ⊢ (Fun 𝐹 → (𝐹 “ 𝑏) ∈ V) |
10 | 7, 9 | syl 14 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝐹 “ 𝑏) ∈ V) |
11 | 1, 6, 10 | f1opw2 6055 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹 “ 𝑏)):𝒫 𝐴–1-1-onto→𝒫 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 Vcvv 2730 𝒫 cpw 3566 ↦ cmpt 4050 ◡ccnv 4610 “ cima 4614 Fun wfun 5192 –onto→wfo 5196 –1-1-onto→wf1o 5197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |