ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1opw GIF version

Theorem f1opw 5970
Description: A one-to-one mapping induces a one-to-one mapping on power sets. (Contributed by Stefan O'Rear, 18-Nov-2014.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
f1opw (𝐹:𝐴1-1-onto𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)):𝒫 𝐴1-1-onto→𝒫 𝐵)
Distinct variable groups:   𝐴,𝑏   𝐵,𝑏   𝐹,𝑏

Proof of Theorem f1opw
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 id 19 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴1-1-onto𝐵)
2 dff1o3 5366 . . . 4 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴onto𝐵 ∧ Fun 𝐹))
32simprbi 273 . . 3 (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
4 vex 2684 . . . 4 𝑎 ∈ V
54funimaex 5203 . . 3 (Fun 𝐹 → (𝐹𝑎) ∈ V)
63, 5syl 14 . 2 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝑎) ∈ V)
7 f1ofun 5362 . . 3 (𝐹:𝐴1-1-onto𝐵 → Fun 𝐹)
8 vex 2684 . . . 4 𝑏 ∈ V
98funimaex 5203 . . 3 (Fun 𝐹 → (𝐹𝑏) ∈ V)
107, 9syl 14 . 2 (𝐹:𝐴1-1-onto𝐵 → (𝐹𝑏) ∈ V)
111, 6, 10f1opw2 5969 1 (𝐹:𝐴1-1-onto𝐵 → (𝑏 ∈ 𝒫 𝐴 ↦ (𝐹𝑏)):𝒫 𝐴1-1-onto→𝒫 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1480  Vcvv 2681  𝒫 cpw 3505  cmpt 3984  ccnv 4533  cima 4537  Fun wfun 5112  ontowfo 5116  1-1-ontowf1o 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator