![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fveq12i | GIF version |
Description: Equality deduction for function value. (Contributed by FL, 27-Jun-2014.) |
Ref | Expression |
---|---|
fveq12i.1 | ⊢ 𝐹 = 𝐺 |
fveq12i.2 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
fveq12i | ⊢ (𝐹‘𝐴) = (𝐺‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq12i.1 | . . 3 ⊢ 𝐹 = 𝐺 | |
2 | 1 | fveq1i 5555 | . 2 ⊢ (𝐹‘𝐴) = (𝐺‘𝐴) |
3 | fveq12i.2 | . . 3 ⊢ 𝐴 = 𝐵 | |
4 | 3 | fveq2i 5557 | . 2 ⊢ (𝐺‘𝐴) = (𝐺‘𝐵) |
5 | 2, 4 | eqtri 2214 | 1 ⊢ (𝐹‘𝐴) = (𝐺‘𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ‘cfv 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |