![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fveq12i | GIF version |
Description: Equality deduction for function value. (Contributed by FL, 27-Jun-2014.) |
Ref | Expression |
---|---|
fveq12i.1 | ⊢ 𝐹 = 𝐺 |
fveq12i.2 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
fveq12i | ⊢ (𝐹‘𝐴) = (𝐺‘𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq12i.1 | . . 3 ⊢ 𝐹 = 𝐺 | |
2 | 1 | fveq1i 5516 | . 2 ⊢ (𝐹‘𝐴) = (𝐺‘𝐴) |
3 | fveq12i.2 | . . 3 ⊢ 𝐴 = 𝐵 | |
4 | 3 | fveq2i 5518 | . 2 ⊢ (𝐺‘𝐴) = (𝐺‘𝐵) |
5 | 2, 4 | eqtri 2198 | 1 ⊢ (𝐹‘𝐴) = (𝐺‘𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ‘cfv 5216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2739 df-un 3133 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4004 df-iota 5178 df-fv 5224 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |