ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2fveq3 GIF version

Theorem 2fveq3 5491
Description: Equality theorem for nested function values. (Contributed by AV, 14-Aug-2022.)
Assertion
Ref Expression
2fveq3 (𝐴 = 𝐵 → (𝐹‘(𝐺𝐴)) = (𝐹‘(𝐺𝐵)))

Proof of Theorem 2fveq3
StepHypRef Expression
1 fveq2 5486 . 2 (𝐴 = 𝐵 → (𝐺𝐴) = (𝐺𝐵))
21fveq2d 5490 1 (𝐴 = 𝐵 → (𝐹‘(𝐺𝐴)) = (𝐹‘(𝐺𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196
This theorem is referenced by:  difinfsnlem  7064  ctssdclemn0  7075  cc2  7208  seq3f1olemqsum  10435  seq3f1oleml  10438  seq3f1o  10439  seq3homo  10445  seq3coll  10755  fsumf1o  11331  iserabs  11416  explecnv  11446  cvgratnnlemnexp  11465  cvgratnnlemmn  11466  fprodf1o  11529  alginv  11979  algcvg  11980  algcvga  11983  ctiunctlemu1st  12367  ctiunctlemu2nd  12368  ctiunctlemudc  12370  ctiunctlemfo  12372  subctctexmid  13891
  Copyright terms: Public domain W3C validator