![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2fveq3 | GIF version |
Description: Equality theorem for nested function values. (Contributed by AV, 14-Aug-2022.) |
Ref | Expression |
---|---|
2fveq3 | ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐺‘𝐴)) = (𝐹‘(𝐺‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 5555 | . 2 ⊢ (𝐴 = 𝐵 → (𝐺‘𝐴) = (𝐺‘𝐵)) | |
2 | 1 | fveq2d 5559 | 1 ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐺‘𝐴)) = (𝐹‘(𝐺‘𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-iota 5216 df-fv 5263 |
This theorem is referenced by: difinfsnlem 7160 ctssdclemn0 7171 cc2 7329 seq3f1olemqsum 10587 seq3f1oleml 10590 seq3f1o 10591 seq3homo 10601 seqhomog 10604 seq3coll 10916 fsumf1o 11536 iserabs 11621 explecnv 11651 cvgratnnlemnexp 11670 cvgratnnlemmn 11671 fprodf1o 11734 nninfctlemfo 12180 alginv 12188 algcvg 12189 algcvga 12192 ctiunctlemu1st 12594 ctiunctlemu2nd 12595 ctiunctlemudc 12597 ctiunctlemfo 12599 isunitd 13605 subctctexmid 15561 |
Copyright terms: Public domain | W3C validator |