| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2fveq3 | GIF version | ||
| Description: Equality theorem for nested function values. (Contributed by AV, 14-Aug-2022.) |
| Ref | Expression |
|---|---|
| 2fveq3 | ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐺‘𝐴)) = (𝐹‘(𝐺‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5576 | . 2 ⊢ (𝐴 = 𝐵 → (𝐺‘𝐴) = (𝐺‘𝐵)) | |
| 2 | 1 | fveq2d 5580 | 1 ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐺‘𝐴)) = (𝐹‘(𝐺‘𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ‘cfv 5271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 |
| This theorem is referenced by: difinfsnlem 7201 ctssdclemn0 7212 cc2 7379 seq3f1olemqsum 10658 seq3f1oleml 10661 seq3f1o 10662 seq3homo 10672 seqhomog 10675 seq3coll 10987 fsumf1o 11701 iserabs 11786 explecnv 11816 cvgratnnlemnexp 11835 cvgratnnlemmn 11836 fprodf1o 11899 nninfctlemfo 12361 alginv 12369 algcvg 12370 algcvga 12373 ctiunctlemu1st 12805 ctiunctlemu2nd 12806 ctiunctlemudc 12808 ctiunctlemfo 12810 prdsbasprj 13114 prdsplusgfval 13116 prdsmulrfval 13118 prdsbas3 13119 prdsinvlem 13440 isunitd 13868 subctctexmid 15937 |
| Copyright terms: Public domain | W3C validator |