| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2fveq3 | GIF version | ||
| Description: Equality theorem for nested function values. (Contributed by AV, 14-Aug-2022.) |
| Ref | Expression |
|---|---|
| 2fveq3 | ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐺‘𝐴)) = (𝐹‘(𝐺‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5561 | . 2 ⊢ (𝐴 = 𝐵 → (𝐺‘𝐴) = (𝐺‘𝐵)) | |
| 2 | 1 | fveq2d 5565 | 1 ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐺‘𝐴)) = (𝐹‘(𝐺‘𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 |
| This theorem is referenced by: difinfsnlem 7174 ctssdclemn0 7185 cc2 7352 seq3f1olemqsum 10624 seq3f1oleml 10627 seq3f1o 10628 seq3homo 10638 seqhomog 10641 seq3coll 10953 fsumf1o 11574 iserabs 11659 explecnv 11689 cvgratnnlemnexp 11708 cvgratnnlemmn 11709 fprodf1o 11772 nninfctlemfo 12234 alginv 12242 algcvg 12243 algcvga 12246 ctiunctlemu1st 12678 ctiunctlemu2nd 12679 ctiunctlemudc 12681 ctiunctlemfo 12683 prdsbasprj 12986 prdsplusgfval 12988 prdsmulrfval 12990 prdsbas3 12991 prdsinvlem 13312 isunitd 13740 subctctexmid 15755 |
| Copyright terms: Public domain | W3C validator |