| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2fveq3 | GIF version | ||
| Description: Equality theorem for nested function values. (Contributed by AV, 14-Aug-2022.) |
| Ref | Expression |
|---|---|
| 2fveq3 | ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐺‘𝐴)) = (𝐹‘(𝐺‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5626 | . 2 ⊢ (𝐴 = 𝐵 → (𝐺‘𝐴) = (𝐺‘𝐵)) | |
| 2 | 1 | fveq2d 5630 | 1 ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐺‘𝐴)) = (𝐹‘(𝐺‘𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ‘cfv 5317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 |
| This theorem is referenced by: difinfsnlem 7262 ctssdclemn0 7273 cc2 7449 seq3f1olemqsum 10730 seq3f1oleml 10733 seq3f1o 10734 seq3homo 10744 seqhomog 10747 seq3coll 11059 fsumf1o 11896 iserabs 11981 explecnv 12011 cvgratnnlemnexp 12030 cvgratnnlemmn 12031 fprodf1o 12094 nninfctlemfo 12556 alginv 12564 algcvg 12565 algcvga 12568 ctiunctlemu1st 13000 ctiunctlemu2nd 13001 ctiunctlemudc 13003 ctiunctlemfo 13005 prdsbasprj 13310 prdsplusgfval 13312 prdsmulrfval 13314 prdsbas3 13315 prdsinvlem 13636 isunitd 14064 wkslem1 16026 wkslem2 16027 subctctexmid 16325 |
| Copyright terms: Public domain | W3C validator |