ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2fveq3 GIF version

Theorem 2fveq3 5631
Description: Equality theorem for nested function values. (Contributed by AV, 14-Aug-2022.)
Assertion
Ref Expression
2fveq3 (𝐴 = 𝐵 → (𝐹‘(𝐺𝐴)) = (𝐹‘(𝐺𝐵)))

Proof of Theorem 2fveq3
StepHypRef Expression
1 fveq2 5626 . 2 (𝐴 = 𝐵 → (𝐺𝐴) = (𝐺𝐵))
21fveq2d 5630 1 (𝐴 = 𝐵 → (𝐹‘(𝐺𝐴)) = (𝐹‘(𝐺𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5277  df-fv 5325
This theorem is referenced by:  difinfsnlem  7262  ctssdclemn0  7273  cc2  7449  seq3f1olemqsum  10730  seq3f1oleml  10733  seq3f1o  10734  seq3homo  10744  seqhomog  10747  seq3coll  11059  fsumf1o  11896  iserabs  11981  explecnv  12011  cvgratnnlemnexp  12030  cvgratnnlemmn  12031  fprodf1o  12094  nninfctlemfo  12556  alginv  12564  algcvg  12565  algcvga  12568  ctiunctlemu1st  13000  ctiunctlemu2nd  13001  ctiunctlemudc  13003  ctiunctlemfo  13005  prdsbasprj  13310  prdsplusgfval  13312  prdsmulrfval  13314  prdsbas3  13315  prdsinvlem  13636  isunitd  14064  wkslem1  16026  wkslem2  16027  subctctexmid  16325
  Copyright terms: Public domain W3C validator