ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2fveq3 GIF version

Theorem 2fveq3 5580
Description: Equality theorem for nested function values. (Contributed by AV, 14-Aug-2022.)
Assertion
Ref Expression
2fveq3 (𝐴 = 𝐵 → (𝐹‘(𝐺𝐴)) = (𝐹‘(𝐺𝐵)))

Proof of Theorem 2fveq3
StepHypRef Expression
1 fveq2 5575 . 2 (𝐴 = 𝐵 → (𝐺𝐴) = (𝐺𝐵))
21fveq2d 5579 1 (𝐴 = 𝐵 → (𝐹‘(𝐺𝐴)) = (𝐹‘(𝐺𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  cfv 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-iota 5231  df-fv 5278
This theorem is referenced by:  difinfsnlem  7200  ctssdclemn0  7211  cc2  7378  seq3f1olemqsum  10656  seq3f1oleml  10659  seq3f1o  10660  seq3homo  10670  seqhomog  10673  seq3coll  10985  fsumf1o  11643  iserabs  11728  explecnv  11758  cvgratnnlemnexp  11777  cvgratnnlemmn  11778  fprodf1o  11841  nninfctlemfo  12303  alginv  12311  algcvg  12312  algcvga  12315  ctiunctlemu1st  12747  ctiunctlemu2nd  12748  ctiunctlemudc  12750  ctiunctlemfo  12752  prdsbasprj  13056  prdsplusgfval  13058  prdsmulrfval  13060  prdsbas3  13061  prdsinvlem  13382  isunitd  13810  subctctexmid  15870
  Copyright terms: Public domain W3C validator