| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2fveq3 | GIF version | ||
| Description: Equality theorem for nested function values. (Contributed by AV, 14-Aug-2022.) |
| Ref | Expression |
|---|---|
| 2fveq3 | ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐺‘𝐴)) = (𝐹‘(𝐺‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5594 | . 2 ⊢ (𝐴 = 𝐵 → (𝐺‘𝐴) = (𝐺‘𝐵)) | |
| 2 | 1 | fveq2d 5598 | 1 ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐺‘𝐴)) = (𝐹‘(𝐺‘𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ‘cfv 5285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-iota 5246 df-fv 5293 |
| This theorem is referenced by: difinfsnlem 7222 ctssdclemn0 7233 cc2 7409 seq3f1olemqsum 10690 seq3f1oleml 10693 seq3f1o 10694 seq3homo 10704 seqhomog 10707 seq3coll 11019 fsumf1o 11786 iserabs 11871 explecnv 11901 cvgratnnlemnexp 11920 cvgratnnlemmn 11921 fprodf1o 11984 nninfctlemfo 12446 alginv 12454 algcvg 12455 algcvga 12458 ctiunctlemu1st 12890 ctiunctlemu2nd 12891 ctiunctlemudc 12893 ctiunctlemfo 12895 prdsbasprj 13199 prdsplusgfval 13201 prdsmulrfval 13203 prdsbas3 13204 prdsinvlem 13525 isunitd 13953 subctctexmid 16109 |
| Copyright terms: Public domain | W3C validator |