| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fveq1i | GIF version | ||
| Description: Equality inference for function value. (Contributed by NM, 2-Sep-2003.) |
| Ref | Expression |
|---|---|
| fveq1i.1 | ⊢ 𝐹 = 𝐺 |
| Ref | Expression |
|---|---|
| fveq1i | ⊢ (𝐹‘𝐴) = (𝐺‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
| 2 | fveq1 5560 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹‘𝐴) = (𝐺‘𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹‘𝐴) = (𝐺‘𝐴) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 |
| This theorem is referenced by: fveq12i 5567 fvun2 5631 fvopab3ig 5638 fvsnun1 5762 fvsnun2 5763 fvpr1 5769 fvpr2 5770 fvpr1g 5771 fvpr2g 5772 fvtp1g 5773 fvtp2g 5774 fvtp3g 5775 fvtp2 5777 fvtp3 5778 ov 6046 ovigg 6047 ovg 6066 tfr2a 6388 tfrex 6435 frec0g 6464 freccllem 6469 frecsuclem 6473 caseinl 7166 caseinr 7167 ctssdccl 7186 addpiord 7400 mulpiord 7401 fseq1p1m1 10186 frec2uz0d 10508 frec2uzzd 10509 frec2uzsucd 10510 frecuzrdgrrn 10517 frec2uzrdg 10518 frecuzrdg0 10522 frecuzrdgsuc 10523 frecuzrdgg 10525 frecuzrdg0t 10531 frecuzrdgsuctlem 10532 0tonninf 10549 1tonninf 10550 inftonninf 10551 seq3val 10569 seqvalcd 10570 hashinfom 10887 hashennn 10889 hashfz1 10892 shftidt 11015 resqrexlemf1 11190 resqrexlemfp1 11191 cbvsum 11542 fisumss 11574 fsumadd 11588 isumclim3 11605 cbvprod 11740 fprodssdc 11772 nninfctlemfo 12232 ialgr0 12237 algrp1 12239 ennnfonelem0 12647 ennnfonelemp1 12648 ennnfonelemom 12650 ctinfomlemom 12669 nninfdclemp1 12692 ndxarg 12726 strslfv2d 12746 prdsidlem 13149 prdsinvlem 13310 ringidvalg 13593 lidlvalg 14103 rspvalg 14104 znf1o 14283 upxp 14592 cnmetdval 14849 remetdval 14867 reeflog 15183 |
| Copyright terms: Public domain | W3C validator |