| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fveq1i | GIF version | ||
| Description: Equality inference for function value. (Contributed by NM, 2-Sep-2003.) |
| Ref | Expression |
|---|---|
| fveq1i.1 | ⊢ 𝐹 = 𝐺 |
| Ref | Expression |
|---|---|
| fveq1i | ⊢ (𝐹‘𝐴) = (𝐺‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
| 2 | fveq1 5560 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹‘𝐴) = (𝐺‘𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹‘𝐴) = (𝐺‘𝐴) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 |
| This theorem is referenced by: fveq12i 5567 fvun2 5631 fvopab3ig 5638 fvsnun1 5762 fvsnun2 5763 fvpr1 5769 fvpr2 5770 fvpr1g 5771 fvpr2g 5772 fvtp1g 5773 fvtp2g 5774 fvtp3g 5775 fvtp2 5777 fvtp3 5778 ov 6046 ovigg 6047 ovg 6066 tfr2a 6388 tfrex 6435 frec0g 6464 freccllem 6469 frecsuclem 6473 caseinl 7166 caseinr 7167 ctssdccl 7186 addpiord 7402 mulpiord 7403 fseq1p1m1 10188 frec2uz0d 10510 frec2uzzd 10511 frec2uzsucd 10512 frecuzrdgrrn 10519 frec2uzrdg 10520 frecuzrdg0 10524 frecuzrdgsuc 10525 frecuzrdgg 10527 frecuzrdg0t 10533 frecuzrdgsuctlem 10534 0tonninf 10551 1tonninf 10552 inftonninf 10553 seq3val 10571 seqvalcd 10572 hashinfom 10889 hashennn 10891 hashfz1 10894 shftidt 11017 resqrexlemf1 11192 resqrexlemfp1 11193 cbvsum 11544 fisumss 11576 fsumadd 11590 isumclim3 11607 cbvprod 11742 fprodssdc 11774 nninfctlemfo 12234 ialgr0 12239 algrp1 12241 ennnfonelem0 12649 ennnfonelemp1 12650 ennnfonelemom 12652 ctinfomlemom 12671 nninfdclemp1 12694 ndxarg 12728 strslfv2d 12748 prdsidlem 13151 prdsinvlem 13312 ringidvalg 13595 lidlvalg 14105 rspvalg 14106 znf1o 14285 mplnegfi 14339 upxp 14616 cnmetdval 14873 remetdval 14891 reeflog 15207 nninfnfiinf 15778 |
| Copyright terms: Public domain | W3C validator |