| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fveq1i | GIF version | ||
| Description: Equality inference for function value. (Contributed by NM, 2-Sep-2003.) |
| Ref | Expression |
|---|---|
| fveq1i.1 | ⊢ 𝐹 = 𝐺 |
| Ref | Expression |
|---|---|
| fveq1i | ⊢ (𝐹‘𝐴) = (𝐺‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
| 2 | fveq1 5625 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹‘𝐴) = (𝐺‘𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹‘𝐴) = (𝐺‘𝐴) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ‘cfv 5317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 |
| This theorem is referenced by: fveq12i 5632 fvun2 5700 fvopab3ig 5707 fvsnun1 5835 fvsnun2 5836 fvpr1 5842 fvpr2 5843 fvpr1g 5844 fvpr2g 5845 fvtp1g 5846 fvtp2g 5847 fvtp3g 5848 fvtp2 5850 fvtp3 5851 ov 6123 ovigg 6124 ovg 6143 tfr2a 6465 tfrex 6512 frec0g 6541 freccllem 6546 frecsuclem 6550 caseinl 7254 caseinr 7255 ctssdccl 7274 addpiord 7499 mulpiord 7500 fseq1p1m1 10286 frec2uz0d 10616 frec2uzzd 10617 frec2uzsucd 10618 frecuzrdgrrn 10625 frec2uzrdg 10626 frecuzrdg0 10630 frecuzrdgsuc 10631 frecuzrdgg 10633 frecuzrdg0t 10639 frecuzrdgsuctlem 10640 0tonninf 10657 1tonninf 10658 inftonninf 10659 seq3val 10677 seqvalcd 10678 hashinfom 10995 hashennn 10997 hashfz1 11000 ccat1st1st 11167 cats1fvd 11293 shftidt 11339 resqrexlemf1 11514 resqrexlemfp1 11515 cbvsum 11866 fisumss 11898 fsumadd 11912 isumclim3 11929 cbvprod 12064 fprodssdc 12096 nninfctlemfo 12556 ialgr0 12561 algrp1 12563 ennnfonelem0 12971 ennnfonelemp1 12972 ennnfonelemom 12974 ctinfomlemom 12993 nninfdclemp1 13016 ndxarg 13050 strslfv2d 13070 prdsidlem 13475 prdsinvlem 13636 ringidvalg 13919 lidlvalg 14429 rspvalg 14430 znf1o 14609 mplnegfi 14663 upxp 14940 cnmetdval 15197 remetdval 15215 reeflog 15531 ushgredgedg 16018 ushgredgedgloop 16020 nninfnfiinf 16348 |
| Copyright terms: Public domain | W3C validator |