![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fveq1i | GIF version |
Description: Equality inference for function value. (Contributed by NM, 2-Sep-2003.) |
Ref | Expression |
---|---|
fveq1i.1 | ⊢ 𝐹 = 𝐺 |
Ref | Expression |
---|---|
fveq1i | ⊢ (𝐹‘𝐴) = (𝐺‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
2 | fveq1 5553 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹‘𝐴) = (𝐺‘𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹‘𝐴) = (𝐺‘𝐴) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ‘cfv 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 |
This theorem is referenced by: fveq12i 5560 fvun2 5624 fvopab3ig 5631 fvsnun1 5755 fvsnun2 5756 fvpr1 5762 fvpr2 5763 fvpr1g 5764 fvpr2g 5765 fvtp1g 5766 fvtp2g 5767 fvtp3g 5768 fvtp2 5770 fvtp3 5771 ov 6038 ovigg 6039 ovg 6057 tfr2a 6374 tfrex 6421 frec0g 6450 freccllem 6455 frecsuclem 6459 caseinl 7150 caseinr 7151 ctssdccl 7170 addpiord 7376 mulpiord 7377 fseq1p1m1 10160 frec2uz0d 10470 frec2uzzd 10471 frec2uzsucd 10472 frecuzrdgrrn 10479 frec2uzrdg 10480 frecuzrdg0 10484 frecuzrdgsuc 10485 frecuzrdgg 10487 frecuzrdg0t 10493 frecuzrdgsuctlem 10494 0tonninf 10511 1tonninf 10512 inftonninf 10513 seq3val 10531 seqvalcd 10532 hashinfom 10849 hashennn 10851 hashfz1 10854 shftidt 10977 resqrexlemf1 11152 resqrexlemfp1 11153 cbvsum 11503 fisumss 11535 fsumadd 11549 isumclim3 11566 cbvprod 11701 fprodssdc 11733 nninfctlemfo 12177 ialgr0 12182 algrp1 12184 ennnfonelem0 12562 ennnfonelemp1 12563 ennnfonelemom 12565 ctinfomlemom 12584 nninfdclemp1 12607 ndxarg 12641 strslfv2d 12661 ringidvalg 13457 lidlvalg 13967 rspvalg 13968 znf1o 14139 upxp 14440 cnmetdval 14697 remetdval 14707 reeflog 14998 |
Copyright terms: Public domain | W3C validator |