| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fveq1i | GIF version | ||
| Description: Equality inference for function value. (Contributed by NM, 2-Sep-2003.) |
| Ref | Expression |
|---|---|
| fveq1i.1 | ⊢ 𝐹 = 𝐺 |
| Ref | Expression |
|---|---|
| fveq1i | ⊢ (𝐹‘𝐴) = (𝐺‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
| 2 | fveq1 5574 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹‘𝐴) = (𝐺‘𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹‘𝐴) = (𝐺‘𝐴) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ‘cfv 5270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-uni 3850 df-br 4044 df-iota 5231 df-fv 5278 |
| This theorem is referenced by: fveq12i 5581 fvun2 5645 fvopab3ig 5652 fvsnun1 5780 fvsnun2 5781 fvpr1 5787 fvpr2 5788 fvpr1g 5789 fvpr2g 5790 fvtp1g 5791 fvtp2g 5792 fvtp3g 5793 fvtp2 5795 fvtp3 5796 ov 6064 ovigg 6065 ovg 6084 tfr2a 6406 tfrex 6453 frec0g 6482 freccllem 6487 frecsuclem 6491 caseinl 7192 caseinr 7193 ctssdccl 7212 addpiord 7428 mulpiord 7429 fseq1p1m1 10215 frec2uz0d 10542 frec2uzzd 10543 frec2uzsucd 10544 frecuzrdgrrn 10551 frec2uzrdg 10552 frecuzrdg0 10556 frecuzrdgsuc 10557 frecuzrdgg 10559 frecuzrdg0t 10565 frecuzrdgsuctlem 10566 0tonninf 10583 1tonninf 10584 inftonninf 10585 seq3val 10603 seqvalcd 10604 hashinfom 10921 hashennn 10923 hashfz1 10926 shftidt 11086 resqrexlemf1 11261 resqrexlemfp1 11262 cbvsum 11613 fisumss 11645 fsumadd 11659 isumclim3 11676 cbvprod 11811 fprodssdc 11843 nninfctlemfo 12303 ialgr0 12308 algrp1 12310 ennnfonelem0 12718 ennnfonelemp1 12719 ennnfonelemom 12721 ctinfomlemom 12740 nninfdclemp1 12763 ndxarg 12797 strslfv2d 12817 prdsidlem 13221 prdsinvlem 13382 ringidvalg 13665 lidlvalg 14175 rspvalg 14176 znf1o 14355 mplnegfi 14409 upxp 14686 cnmetdval 14943 remetdval 14961 reeflog 15277 nninfnfiinf 15893 |
| Copyright terms: Public domain | W3C validator |