| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fveq1i | GIF version | ||
| Description: Equality inference for function value. (Contributed by NM, 2-Sep-2003.) |
| Ref | Expression |
|---|---|
| fveq1i.1 | ⊢ 𝐹 = 𝐺 |
| Ref | Expression |
|---|---|
| fveq1i | ⊢ (𝐹‘𝐴) = (𝐺‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
| 2 | fveq1 5588 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹‘𝐴) = (𝐺‘𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹‘𝐴) = (𝐺‘𝐴) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ‘cfv 5280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-uni 3857 df-br 4052 df-iota 5241 df-fv 5288 |
| This theorem is referenced by: fveq12i 5595 fvun2 5659 fvopab3ig 5666 fvsnun1 5794 fvsnun2 5795 fvpr1 5801 fvpr2 5802 fvpr1g 5803 fvpr2g 5804 fvtp1g 5805 fvtp2g 5806 fvtp3g 5807 fvtp2 5809 fvtp3 5810 ov 6078 ovigg 6079 ovg 6098 tfr2a 6420 tfrex 6467 frec0g 6496 freccllem 6501 frecsuclem 6505 caseinl 7208 caseinr 7209 ctssdccl 7228 addpiord 7449 mulpiord 7450 fseq1p1m1 10236 frec2uz0d 10566 frec2uzzd 10567 frec2uzsucd 10568 frecuzrdgrrn 10575 frec2uzrdg 10576 frecuzrdg0 10580 frecuzrdgsuc 10581 frecuzrdgg 10583 frecuzrdg0t 10589 frecuzrdgsuctlem 10590 0tonninf 10607 1tonninf 10608 inftonninf 10609 seq3val 10627 seqvalcd 10628 hashinfom 10945 hashennn 10947 hashfz1 10950 ccat1st1st 11116 shftidt 11219 resqrexlemf1 11394 resqrexlemfp1 11395 cbvsum 11746 fisumss 11778 fsumadd 11792 isumclim3 11809 cbvprod 11944 fprodssdc 11976 nninfctlemfo 12436 ialgr0 12441 algrp1 12443 ennnfonelem0 12851 ennnfonelemp1 12852 ennnfonelemom 12854 ctinfomlemom 12873 nninfdclemp1 12896 ndxarg 12930 strslfv2d 12950 prdsidlem 13354 prdsinvlem 13515 ringidvalg 13798 lidlvalg 14308 rspvalg 14309 znf1o 14488 mplnegfi 14542 upxp 14819 cnmetdval 15076 remetdval 15094 reeflog 15410 nninfnfiinf 16101 |
| Copyright terms: Public domain | W3C validator |