Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fveq1i | GIF version |
Description: Equality inference for function value. (Contributed by NM, 2-Sep-2003.) |
Ref | Expression |
---|---|
fveq1i.1 | ⊢ 𝐹 = 𝐺 |
Ref | Expression |
---|---|
fveq1i | ⊢ (𝐹‘𝐴) = (𝐺‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
2 | fveq1 5506 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹‘𝐴) = (𝐺‘𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹‘𝐴) = (𝐺‘𝐴) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ‘cfv 5208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-uni 3806 df-br 3999 df-iota 5170 df-fv 5216 |
This theorem is referenced by: fveq12i 5513 fvun2 5575 fvopab3ig 5582 fvsnun1 5705 fvsnun2 5706 fvpr1 5712 fvpr2 5713 fvpr1g 5714 fvpr2g 5715 fvtp1g 5716 fvtp2g 5717 fvtp3g 5718 fvtp2 5720 fvtp3 5721 ov 5984 ovigg 5985 ovg 6003 tfr2a 6312 tfrex 6359 frec0g 6388 freccllem 6393 frecsuclem 6397 caseinl 7080 caseinr 7081 ctssdccl 7100 addpiord 7290 mulpiord 7291 fseq1p1m1 10062 frec2uz0d 10367 frec2uzzd 10368 frec2uzsucd 10369 frecuzrdgrrn 10376 frec2uzrdg 10377 frecuzrdg0 10381 frecuzrdgsuc 10382 frecuzrdgg 10384 frecuzrdg0t 10390 frecuzrdgsuctlem 10391 0tonninf 10407 1tonninf 10408 inftonninf 10409 seq3val 10426 seqvalcd 10427 hashinfom 10724 hashennn 10726 hashfz1 10729 shftidt 10808 resqrexlemf1 10983 resqrexlemfp1 10984 cbvsum 11334 fisumss 11366 fsumadd 11380 isumclim3 11397 cbvprod 11532 fprodssdc 11564 ialgr0 12009 algrp1 12011 ennnfonelem0 12371 ennnfonelemp1 12372 ennnfonelemom 12374 ctinfomlemom 12393 nninfdclemp1 12416 ndxarg 12450 strslfv2d 12469 ringidvalg 12937 upxp 13323 cnmetdval 13580 remetdval 13590 reeflog 13835 |
Copyright terms: Public domain | W3C validator |