![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fveq1i | GIF version |
Description: Equality inference for function value. (Contributed by NM, 2-Sep-2003.) |
Ref | Expression |
---|---|
fveq1i.1 | ⊢ 𝐹 = 𝐺 |
Ref | Expression |
---|---|
fveq1i | ⊢ (𝐹‘𝐴) = (𝐺‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
2 | fveq1 5554 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹‘𝐴) = (𝐺‘𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹‘𝐴) = (𝐺‘𝐴) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-uni 3837 df-br 4031 df-iota 5216 df-fv 5263 |
This theorem is referenced by: fveq12i 5561 fvun2 5625 fvopab3ig 5632 fvsnun1 5756 fvsnun2 5757 fvpr1 5763 fvpr2 5764 fvpr1g 5765 fvpr2g 5766 fvtp1g 5767 fvtp2g 5768 fvtp3g 5769 fvtp2 5771 fvtp3 5772 ov 6039 ovigg 6040 ovg 6059 tfr2a 6376 tfrex 6423 frec0g 6452 freccllem 6457 frecsuclem 6461 caseinl 7152 caseinr 7153 ctssdccl 7172 addpiord 7378 mulpiord 7379 fseq1p1m1 10163 frec2uz0d 10473 frec2uzzd 10474 frec2uzsucd 10475 frecuzrdgrrn 10482 frec2uzrdg 10483 frecuzrdg0 10487 frecuzrdgsuc 10488 frecuzrdgg 10490 frecuzrdg0t 10496 frecuzrdgsuctlem 10497 0tonninf 10514 1tonninf 10515 inftonninf 10516 seq3val 10534 seqvalcd 10535 hashinfom 10852 hashennn 10854 hashfz1 10857 shftidt 10980 resqrexlemf1 11155 resqrexlemfp1 11156 cbvsum 11506 fisumss 11538 fsumadd 11552 isumclim3 11569 cbvprod 11704 fprodssdc 11736 nninfctlemfo 12180 ialgr0 12185 algrp1 12187 ennnfonelem0 12565 ennnfonelemp1 12566 ennnfonelemom 12568 ctinfomlemom 12587 nninfdclemp1 12610 ndxarg 12644 strslfv2d 12664 ringidvalg 13460 lidlvalg 13970 rspvalg 13971 znf1o 14150 upxp 14451 cnmetdval 14708 remetdval 14726 reeflog 15039 |
Copyright terms: Public domain | W3C validator |