Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fveq1i | GIF version |
Description: Equality inference for function value. (Contributed by NM, 2-Sep-2003.) |
Ref | Expression |
---|---|
fveq1i.1 | ⊢ 𝐹 = 𝐺 |
Ref | Expression |
---|---|
fveq1i | ⊢ (𝐹‘𝐴) = (𝐺‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
2 | fveq1 5464 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹‘𝐴) = (𝐺‘𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹‘𝐴) = (𝐺‘𝐴) |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 ‘cfv 5167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-uni 3773 df-br 3966 df-iota 5132 df-fv 5175 |
This theorem is referenced by: fveq12i 5471 fvun2 5532 fvopab3ig 5539 fvsnun1 5661 fvsnun2 5662 fvpr1 5668 fvpr2 5669 fvpr1g 5670 fvpr2g 5671 fvtp1g 5672 fvtp2g 5673 fvtp3g 5674 fvtp2 5676 fvtp3 5677 ov 5934 ovigg 5935 ovg 5953 tfr2a 6262 tfrex 6309 frec0g 6338 freccllem 6343 frecsuclem 6347 caseinl 7025 caseinr 7026 ctssdccl 7045 addpiord 7219 mulpiord 7220 fseq1p1m1 9978 frec2uz0d 10280 frec2uzzd 10281 frec2uzsucd 10282 frecuzrdgrrn 10289 frec2uzrdg 10290 frecuzrdg0 10294 frecuzrdgsuc 10295 frecuzrdgg 10297 frecuzrdg0t 10303 frecuzrdgsuctlem 10304 0tonninf 10320 1tonninf 10321 inftonninf 10322 seq3val 10339 seqvalcd 10340 hashinfom 10634 hashennn 10636 hashfz1 10639 shftidt 10715 resqrexlemf1 10890 resqrexlemfp1 10891 cbvsum 11239 fisumss 11271 fsumadd 11285 isumclim3 11302 cbvprod 11437 fprodssdc 11469 ialgr0 11901 algrp1 11903 ennnfonelem0 12106 ennnfonelemp1 12107 ennnfonelemom 12109 ctinfomlemom 12128 ndxarg 12173 strslfv2d 12192 upxp 12632 cnmetdval 12889 remetdval 12899 reeflog 13144 |
Copyright terms: Public domain | W3C validator |