| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fveq12d | GIF version | ||
| Description: Equality deduction for function value. (Contributed by FL, 22-Dec-2008.) |
| Ref | Expression |
|---|---|
| fveq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| fveq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fveq12d | ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq12d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | fveq1d 5625 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
| 3 | fveq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | fveq2d 5627 | . 2 ⊢ (𝜑 → (𝐺‘𝐴) = (𝐺‘𝐵)) |
| 5 | 2, 4 | eqtrd 2262 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ‘cfv 5314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5274 df-fv 5322 |
| This theorem is referenced by: nffvd 5635 fvsng 5828 fvmpopr2d 6132 tfrlem3ag 6445 tfrlem3a 6446 tfrlemi1 6468 tfr1onlem3ag 6473 omp1eomlem 7249 lswwrd 11104 swrdval 11166 cats1fvnd 11283 seq3shft 11335 climshft2 11803 fsum3 11884 ctiunctlemfo 12996 imasival 13325 gsumfzval 13410 gsumval2 13416 prdsinvlem 13627 mulgfvalg 13644 mulgval 13645 mulgnndir 13674 mulgpropdg 13687 unitinvinv 14073 rlmvalg 14403 rsp0 14442 znval 14585 reldvg 15338 dvfvalap 15340 lgsval 15668 lgsneg 15688 |
| Copyright terms: Public domain | W3C validator |