| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fveq12d | GIF version | ||
| Description: Equality deduction for function value. (Contributed by FL, 22-Dec-2008.) |
| Ref | Expression |
|---|---|
| fveq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| fveq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fveq12d | ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq12d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | fveq1d 5631 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
| 3 | fveq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | fveq2d 5633 | . 2 ⊢ (𝜑 → (𝐺‘𝐴) = (𝐺‘𝐵)) |
| 5 | 2, 4 | eqtrd 2262 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ‘cfv 5318 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 |
| This theorem is referenced by: nffvd 5641 fvsng 5839 fvmpopr2d 6147 tfrlem3ag 6461 tfrlem3a 6462 tfrlemi1 6484 tfr1onlem3ag 6489 omp1eomlem 7269 lswwrd 11126 swrdval 11188 cats1fvnd 11305 seq3shft 11357 climshft2 11825 fsum3 11906 ctiunctlemfo 13018 imasival 13347 gsumfzval 13432 gsumval2 13438 prdsinvlem 13649 mulgfvalg 13666 mulgval 13667 mulgnndir 13696 mulgpropdg 13709 unitinvinv 14096 rlmvalg 14426 rsp0 14465 znval 14608 reldvg 15361 dvfvalap 15363 lgsval 15691 lgsneg 15711 wlkres 16098 |
| Copyright terms: Public domain | W3C validator |