| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fveq12d | GIF version | ||
| Description: Equality deduction for function value. (Contributed by FL, 22-Dec-2008.) |
| Ref | Expression |
|---|---|
| fveq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| fveq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fveq12d | ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq12d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | fveq1d 5590 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
| 3 | fveq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | fveq2d 5592 | . 2 ⊢ (𝜑 → (𝐺‘𝐴) = (𝐺‘𝐵)) |
| 5 | 2, 4 | eqtrd 2239 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ‘cfv 5279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3174 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-iota 5240 df-fv 5287 |
| This theorem is referenced by: nffvd 5600 fvsng 5792 fvmpopr2d 6094 tfrlem3ag 6407 tfrlem3a 6408 tfrlemi1 6430 tfr1onlem3ag 6435 omp1eomlem 7210 lswwrd 11057 swrdval 11119 seq3shft 11219 climshft2 11687 fsum3 11768 ctiunctlemfo 12880 imasival 13208 gsumfzval 13293 gsumval2 13299 prdsinvlem 13510 mulgfvalg 13527 mulgval 13528 mulgnndir 13557 mulgpropdg 13570 unitinvinv 13956 rlmvalg 14286 rsp0 14325 znval 14468 reldvg 15221 dvfvalap 15223 lgsval 15551 lgsneg 15571 |
| Copyright terms: Public domain | W3C validator |