![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fveq12d | GIF version |
Description: Equality deduction for function value. (Contributed by FL, 22-Dec-2008.) |
Ref | Expression |
---|---|
fveq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
fveq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fveq12d | ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq12d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | 1 | fveq1d 5557 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
3 | fveq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 3 | fveq2d 5559 | . 2 ⊢ (𝜑 → (𝐺‘𝐴) = (𝐺‘𝐵)) |
5 | 2, 4 | eqtrd 2226 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-iota 5216 df-fv 5263 |
This theorem is referenced by: nffvd 5567 fvsng 5755 fvmpopr2d 6056 tfrlem3ag 6364 tfrlem3a 6365 tfrlemi1 6387 tfr1onlem3ag 6392 omp1eomlem 7155 seq3shft 10985 climshft2 11452 fsum3 11533 ctiunctlemfo 12599 imasival 12892 gsumfzval 12977 gsumval2 12983 mulgfvalg 13194 mulgval 13195 mulgnndir 13224 mulgpropdg 13237 unitinvinv 13623 rlmvalg 13953 rsp0 13992 znval 14135 reldvg 14858 dvfvalap 14860 lgsval 15161 lgsneg 15181 |
Copyright terms: Public domain | W3C validator |