| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fveq12d | GIF version | ||
| Description: Equality deduction for function value. (Contributed by FL, 22-Dec-2008.) |
| Ref | Expression |
|---|---|
| fveq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| fveq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fveq12d | ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq12d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | fveq1d 5561 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
| 3 | fveq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | fveq2d 5563 | . 2 ⊢ (𝜑 → (𝐺‘𝐴) = (𝐺‘𝐵)) |
| 5 | 2, 4 | eqtrd 2229 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 |
| This theorem is referenced by: nffvd 5571 fvsng 5759 fvmpopr2d 6060 tfrlem3ag 6368 tfrlem3a 6369 tfrlemi1 6391 tfr1onlem3ag 6396 omp1eomlem 7161 seq3shft 11005 climshft2 11473 fsum3 11554 ctiunctlemfo 12666 imasival 12959 gsumfzval 13044 gsumval2 13050 mulgfvalg 13261 mulgval 13262 mulgnndir 13291 mulgpropdg 13304 unitinvinv 13690 rlmvalg 14020 rsp0 14059 znval 14202 reldvg 14925 dvfvalap 14927 lgsval 15255 lgsneg 15275 |
| Copyright terms: Public domain | W3C validator |