| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fveq12d | GIF version | ||
| Description: Equality deduction for function value. (Contributed by FL, 22-Dec-2008.) |
| Ref | Expression |
|---|---|
| fveq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| fveq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fveq12d | ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq12d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | fveq1d 5563 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) |
| 3 | fveq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | fveq2d 5565 | . 2 ⊢ (𝜑 → (𝐺‘𝐴) = (𝐺‘𝐵)) |
| 5 | 2, 4 | eqtrd 2229 | 1 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ‘cfv 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 |
| This theorem is referenced by: nffvd 5573 fvsng 5761 fvmpopr2d 6063 tfrlem3ag 6376 tfrlem3a 6377 tfrlemi1 6399 tfr1onlem3ag 6404 omp1eomlem 7169 seq3shft 11020 climshft2 11488 fsum3 11569 ctiunctlemfo 12681 imasival 13008 gsumfzval 13093 gsumval2 13099 prdsinvlem 13310 mulgfvalg 13327 mulgval 13328 mulgnndir 13357 mulgpropdg 13370 unitinvinv 13756 rlmvalg 14086 rsp0 14125 znval 14268 reldvg 14999 dvfvalap 15001 lgsval 15329 lgsneg 15349 |
| Copyright terms: Public domain | W3C validator |