ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fveq12d GIF version

Theorem fveq12d 5566
Description: Equality deduction for function value. (Contributed by FL, 22-Dec-2008.)
Hypotheses
Ref Expression
fveq12d.1 (𝜑𝐹 = 𝐺)
fveq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
fveq12d (𝜑 → (𝐹𝐴) = (𝐺𝐵))

Proof of Theorem fveq12d
StepHypRef Expression
1 fveq12d.1 . . 3 (𝜑𝐹 = 𝐺)
21fveq1d 5561 . 2 (𝜑 → (𝐹𝐴) = (𝐺𝐴))
3 fveq12d.2 . . 3 (𝜑𝐴 = 𝐵)
43fveq2d 5563 . 2 (𝜑 → (𝐺𝐴) = (𝐺𝐵))
52, 4eqtrd 2229 1 (𝜑 → (𝐹𝐴) = (𝐺𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267
This theorem is referenced by:  nffvd  5571  fvsng  5759  fvmpopr2d  6060  tfrlem3ag  6368  tfrlem3a  6369  tfrlemi1  6391  tfr1onlem3ag  6396  omp1eomlem  7161  seq3shft  11005  climshft2  11473  fsum3  11554  ctiunctlemfo  12666  imasival  12959  gsumfzval  13044  gsumval2  13050  mulgfvalg  13261  mulgval  13262  mulgnndir  13291  mulgpropdg  13304  unitinvinv  13690  rlmvalg  14020  rsp0  14059  znval  14202  reldvg  14925  dvfvalap  14927  lgsval  15255  lgsneg  15275
  Copyright terms: Public domain W3C validator