ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1exp GIF version

Theorem 1exp 10535
Description: Value of one raised to a nonnegative integer power. (Contributed by NM, 15-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
1exp (𝑁 ∈ ℤ → (1↑𝑁) = 1)

Proof of Theorem 1exp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1ex 7943 . . . 4 1 ∈ V
21snid 3622 . . 3 1 ∈ {1}
3 1ap0 8537 . . 3 1 # 0
4 ax-1cn 7895 . . . . 5 1 ∈ ℂ
5 snssi 3735 . . . . 5 (1 ∈ ℂ → {1} ⊆ ℂ)
64, 5ax-mp 5 . . . 4 {1} ⊆ ℂ
7 elsni 3609 . . . . . 6 (𝑥 ∈ {1} → 𝑥 = 1)
8 elsni 3609 . . . . . 6 (𝑦 ∈ {1} → 𝑦 = 1)
9 oveq12 5878 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1))
10 1t1e1 9060 . . . . . . 7 (1 · 1) = 1
119, 10eqtrdi 2226 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = 1)
127, 8, 11syl2an 289 . . . . 5 ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) = 1)
13 eleq1 2240 . . . . . . . 8 ((𝑥 · 𝑦) = 1 → ((𝑥 · 𝑦) ∈ V ↔ 1 ∈ V))
141, 13mpbiri 168 . . . . . . 7 ((𝑥 · 𝑦) = 1 → (𝑥 · 𝑦) ∈ V)
15 elsng 3606 . . . . . . 7 ((𝑥 · 𝑦) ∈ V → ((𝑥 · 𝑦) ∈ {1} ↔ (𝑥 · 𝑦) = 1))
1614, 15syl 14 . . . . . 6 ((𝑥 · 𝑦) = 1 → ((𝑥 · 𝑦) ∈ {1} ↔ (𝑥 · 𝑦) = 1))
1716ibir 177 . . . . 5 ((𝑥 · 𝑦) = 1 → (𝑥 · 𝑦) ∈ {1})
1812, 17syl 14 . . . 4 ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) ∈ {1})
197oveq2d 5885 . . . . . . 7 (𝑥 ∈ {1} → (1 / 𝑥) = (1 / 1))
20 1div1e1 8650 . . . . . . 7 (1 / 1) = 1
2119, 20eqtrdi 2226 . . . . . 6 (𝑥 ∈ {1} → (1 / 𝑥) = 1)
22 eleq1 2240 . . . . . . . . 9 ((1 / 𝑥) = 1 → ((1 / 𝑥) ∈ V ↔ 1 ∈ V))
231, 22mpbiri 168 . . . . . . . 8 ((1 / 𝑥) = 1 → (1 / 𝑥) ∈ V)
24 elsng 3606 . . . . . . . 8 ((1 / 𝑥) ∈ V → ((1 / 𝑥) ∈ {1} ↔ (1 / 𝑥) = 1))
2523, 24syl 14 . . . . . . 7 ((1 / 𝑥) = 1 → ((1 / 𝑥) ∈ {1} ↔ (1 / 𝑥) = 1))
2625ibir 177 . . . . . 6 ((1 / 𝑥) = 1 → (1 / 𝑥) ∈ {1})
2721, 26syl 14 . . . . 5 (𝑥 ∈ {1} → (1 / 𝑥) ∈ {1})
2827adantr 276 . . . 4 ((𝑥 ∈ {1} ∧ 𝑥 # 0) → (1 / 𝑥) ∈ {1})
296, 18, 2, 28expcl2lemap 10518 . . 3 ((1 ∈ {1} ∧ 1 # 0 ∧ 𝑁 ∈ ℤ) → (1↑𝑁) ∈ {1})
302, 3, 29mp3an12 1327 . 2 (𝑁 ∈ ℤ → (1↑𝑁) ∈ {1})
31 elsni 3609 . 2 ((1↑𝑁) ∈ {1} → (1↑𝑁) = 1)
3230, 31syl 14 1 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  Vcvv 2737  wss 3129  {csn 3591   class class class wbr 4000  (class class class)co 5869  cc 7800  0cc0 7802  1c1 7803   · cmul 7807   # cap 8528   / cdiv 8618  cz 9242  cexp 10505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-seqfrec 10432  df-exp 10506
This theorem is referenced by:  exprecap  10547  sq1  10599  iexpcyc  10610  binom1p  11477  binom11  11478  esum  11654  ege2le3  11663  eirraplem  11768  odzdvds  12228  ef2kpi  13894
  Copyright terms: Public domain W3C validator