ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1exp GIF version

Theorem 1exp 10505
Description: Value of one raised to a nonnegative integer power. (Contributed by NM, 15-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
1exp (𝑁 ∈ ℤ → (1↑𝑁) = 1)

Proof of Theorem 1exp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1ex 7915 . . . 4 1 ∈ V
21snid 3614 . . 3 1 ∈ {1}
3 1ap0 8509 . . 3 1 # 0
4 ax-1cn 7867 . . . . 5 1 ∈ ℂ
5 snssi 3724 . . . . 5 (1 ∈ ℂ → {1} ⊆ ℂ)
64, 5ax-mp 5 . . . 4 {1} ⊆ ℂ
7 elsni 3601 . . . . . 6 (𝑥 ∈ {1} → 𝑥 = 1)
8 elsni 3601 . . . . . 6 (𝑦 ∈ {1} → 𝑦 = 1)
9 oveq12 5862 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1))
10 1t1e1 9030 . . . . . . 7 (1 · 1) = 1
119, 10eqtrdi 2219 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = 1)
127, 8, 11syl2an 287 . . . . 5 ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) = 1)
13 eleq1 2233 . . . . . . . 8 ((𝑥 · 𝑦) = 1 → ((𝑥 · 𝑦) ∈ V ↔ 1 ∈ V))
141, 13mpbiri 167 . . . . . . 7 ((𝑥 · 𝑦) = 1 → (𝑥 · 𝑦) ∈ V)
15 elsng 3598 . . . . . . 7 ((𝑥 · 𝑦) ∈ V → ((𝑥 · 𝑦) ∈ {1} ↔ (𝑥 · 𝑦) = 1))
1614, 15syl 14 . . . . . 6 ((𝑥 · 𝑦) = 1 → ((𝑥 · 𝑦) ∈ {1} ↔ (𝑥 · 𝑦) = 1))
1716ibir 176 . . . . 5 ((𝑥 · 𝑦) = 1 → (𝑥 · 𝑦) ∈ {1})
1812, 17syl 14 . . . 4 ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) ∈ {1})
197oveq2d 5869 . . . . . . 7 (𝑥 ∈ {1} → (1 / 𝑥) = (1 / 1))
20 1div1e1 8621 . . . . . . 7 (1 / 1) = 1
2119, 20eqtrdi 2219 . . . . . 6 (𝑥 ∈ {1} → (1 / 𝑥) = 1)
22 eleq1 2233 . . . . . . . . 9 ((1 / 𝑥) = 1 → ((1 / 𝑥) ∈ V ↔ 1 ∈ V))
231, 22mpbiri 167 . . . . . . . 8 ((1 / 𝑥) = 1 → (1 / 𝑥) ∈ V)
24 elsng 3598 . . . . . . . 8 ((1 / 𝑥) ∈ V → ((1 / 𝑥) ∈ {1} ↔ (1 / 𝑥) = 1))
2523, 24syl 14 . . . . . . 7 ((1 / 𝑥) = 1 → ((1 / 𝑥) ∈ {1} ↔ (1 / 𝑥) = 1))
2625ibir 176 . . . . . 6 ((1 / 𝑥) = 1 → (1 / 𝑥) ∈ {1})
2721, 26syl 14 . . . . 5 (𝑥 ∈ {1} → (1 / 𝑥) ∈ {1})
2827adantr 274 . . . 4 ((𝑥 ∈ {1} ∧ 𝑥 # 0) → (1 / 𝑥) ∈ {1})
296, 18, 2, 28expcl2lemap 10488 . . 3 ((1 ∈ {1} ∧ 1 # 0 ∧ 𝑁 ∈ ℤ) → (1↑𝑁) ∈ {1})
302, 3, 29mp3an12 1322 . 2 (𝑁 ∈ ℤ → (1↑𝑁) ∈ {1})
31 elsni 3601 . 2 ((1↑𝑁) ∈ {1} → (1↑𝑁) = 1)
3230, 31syl 14 1 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  Vcvv 2730  wss 3121  {csn 3583   class class class wbr 3989  (class class class)co 5853  cc 7772  0cc0 7774  1c1 7775   · cmul 7779   # cap 8500   / cdiv 8589  cz 9212  cexp 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-seqfrec 10402  df-exp 10476
This theorem is referenced by:  exprecap  10517  sq1  10569  iexpcyc  10580  binom1p  11448  binom11  11449  esum  11625  ege2le3  11634  eirraplem  11739  odzdvds  12199  ef2kpi  13521
  Copyright terms: Public domain W3C validator