![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1exp | GIF version |
Description: Value of one raised to a nonnegative integer power. (Contributed by NM, 15-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
1exp | ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1ex 8014 | . . . 4 ⊢ 1 ∈ V | |
2 | 1 | snid 3649 | . . 3 ⊢ 1 ∈ {1} |
3 | 1ap0 8609 | . . 3 ⊢ 1 # 0 | |
4 | ax-1cn 7965 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | snssi 3762 | . . . . 5 ⊢ (1 ∈ ℂ → {1} ⊆ ℂ) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ {1} ⊆ ℂ |
7 | elsni 3636 | . . . . . 6 ⊢ (𝑥 ∈ {1} → 𝑥 = 1) | |
8 | elsni 3636 | . . . . . 6 ⊢ (𝑦 ∈ {1} → 𝑦 = 1) | |
9 | oveq12 5927 | . . . . . . 7 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1)) | |
10 | 1t1e1 9134 | . . . . . . 7 ⊢ (1 · 1) = 1 | |
11 | 9, 10 | eqtrdi 2242 | . . . . . 6 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = 1) |
12 | 7, 8, 11 | syl2an 289 | . . . . 5 ⊢ ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) = 1) |
13 | eleq1 2256 | . . . . . . . 8 ⊢ ((𝑥 · 𝑦) = 1 → ((𝑥 · 𝑦) ∈ V ↔ 1 ∈ V)) | |
14 | 1, 13 | mpbiri 168 | . . . . . . 7 ⊢ ((𝑥 · 𝑦) = 1 → (𝑥 · 𝑦) ∈ V) |
15 | elsng 3633 | . . . . . . 7 ⊢ ((𝑥 · 𝑦) ∈ V → ((𝑥 · 𝑦) ∈ {1} ↔ (𝑥 · 𝑦) = 1)) | |
16 | 14, 15 | syl 14 | . . . . . 6 ⊢ ((𝑥 · 𝑦) = 1 → ((𝑥 · 𝑦) ∈ {1} ↔ (𝑥 · 𝑦) = 1)) |
17 | 16 | ibir 177 | . . . . 5 ⊢ ((𝑥 · 𝑦) = 1 → (𝑥 · 𝑦) ∈ {1}) |
18 | 12, 17 | syl 14 | . . . 4 ⊢ ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) ∈ {1}) |
19 | 7 | oveq2d 5934 | . . . . . . 7 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) = (1 / 1)) |
20 | 1div1e1 8723 | . . . . . . 7 ⊢ (1 / 1) = 1 | |
21 | 19, 20 | eqtrdi 2242 | . . . . . 6 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) = 1) |
22 | eleq1 2256 | . . . . . . . . 9 ⊢ ((1 / 𝑥) = 1 → ((1 / 𝑥) ∈ V ↔ 1 ∈ V)) | |
23 | 1, 22 | mpbiri 168 | . . . . . . . 8 ⊢ ((1 / 𝑥) = 1 → (1 / 𝑥) ∈ V) |
24 | elsng 3633 | . . . . . . . 8 ⊢ ((1 / 𝑥) ∈ V → ((1 / 𝑥) ∈ {1} ↔ (1 / 𝑥) = 1)) | |
25 | 23, 24 | syl 14 | . . . . . . 7 ⊢ ((1 / 𝑥) = 1 → ((1 / 𝑥) ∈ {1} ↔ (1 / 𝑥) = 1)) |
26 | 25 | ibir 177 | . . . . . 6 ⊢ ((1 / 𝑥) = 1 → (1 / 𝑥) ∈ {1}) |
27 | 21, 26 | syl 14 | . . . . 5 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) ∈ {1}) |
28 | 27 | adantr 276 | . . . 4 ⊢ ((𝑥 ∈ {1} ∧ 𝑥 # 0) → (1 / 𝑥) ∈ {1}) |
29 | 6, 18, 2, 28 | expcl2lemap 10622 | . . 3 ⊢ ((1 ∈ {1} ∧ 1 # 0 ∧ 𝑁 ∈ ℤ) → (1↑𝑁) ∈ {1}) |
30 | 2, 3, 29 | mp3an12 1338 | . 2 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) ∈ {1}) |
31 | elsni 3636 | . 2 ⊢ ((1↑𝑁) ∈ {1} → (1↑𝑁) = 1) | |
32 | 30, 31 | syl 14 | 1 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3153 {csn 3618 class class class wbr 4029 (class class class)co 5918 ℂcc 7870 0cc0 7872 1c1 7873 · cmul 7877 # cap 8600 / cdiv 8691 ℤcz 9317 ↑cexp 10609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-n0 9241 df-z 9318 df-uz 9593 df-seqfrec 10519 df-exp 10610 |
This theorem is referenced by: exprecap 10651 sq1 10704 iexpcyc 10715 binom1p 11628 binom11 11629 esum 11805 ege2le3 11814 eirraplem 11920 odzdvds 12383 ef2kpi 14941 lgseisenlem1 15186 lgseisenlem4 15189 lgseisen 15190 lgsquadlem1 15191 m1lgs 15192 |
Copyright terms: Public domain | W3C validator |