| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1exp | GIF version | ||
| Description: Value of one raised to a nonnegative integer power. (Contributed by NM, 15-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
| Ref | Expression |
|---|---|
| 1exp | ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1ex 8087 | . . . 4 ⊢ 1 ∈ V | |
| 2 | 1 | snid 3669 | . . 3 ⊢ 1 ∈ {1} |
| 3 | 1ap0 8683 | . . 3 ⊢ 1 # 0 | |
| 4 | ax-1cn 8038 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 5 | snssi 3783 | . . . . 5 ⊢ (1 ∈ ℂ → {1} ⊆ ℂ) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ {1} ⊆ ℂ |
| 7 | elsni 3656 | . . . . . 6 ⊢ (𝑥 ∈ {1} → 𝑥 = 1) | |
| 8 | elsni 3656 | . . . . . 6 ⊢ (𝑦 ∈ {1} → 𝑦 = 1) | |
| 9 | oveq12 5966 | . . . . . . 7 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1)) | |
| 10 | 1t1e1 9209 | . . . . . . 7 ⊢ (1 · 1) = 1 | |
| 11 | 9, 10 | eqtrdi 2255 | . . . . . 6 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = 1) |
| 12 | 7, 8, 11 | syl2an 289 | . . . . 5 ⊢ ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) = 1) |
| 13 | eleq1 2269 | . . . . . . . 8 ⊢ ((𝑥 · 𝑦) = 1 → ((𝑥 · 𝑦) ∈ V ↔ 1 ∈ V)) | |
| 14 | 1, 13 | mpbiri 168 | . . . . . . 7 ⊢ ((𝑥 · 𝑦) = 1 → (𝑥 · 𝑦) ∈ V) |
| 15 | elsng 3653 | . . . . . . 7 ⊢ ((𝑥 · 𝑦) ∈ V → ((𝑥 · 𝑦) ∈ {1} ↔ (𝑥 · 𝑦) = 1)) | |
| 16 | 14, 15 | syl 14 | . . . . . 6 ⊢ ((𝑥 · 𝑦) = 1 → ((𝑥 · 𝑦) ∈ {1} ↔ (𝑥 · 𝑦) = 1)) |
| 17 | 16 | ibir 177 | . . . . 5 ⊢ ((𝑥 · 𝑦) = 1 → (𝑥 · 𝑦) ∈ {1}) |
| 18 | 12, 17 | syl 14 | . . . 4 ⊢ ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) ∈ {1}) |
| 19 | 7 | oveq2d 5973 | . . . . . . 7 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) = (1 / 1)) |
| 20 | 1div1e1 8797 | . . . . . . 7 ⊢ (1 / 1) = 1 | |
| 21 | 19, 20 | eqtrdi 2255 | . . . . . 6 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) = 1) |
| 22 | eleq1 2269 | . . . . . . . . 9 ⊢ ((1 / 𝑥) = 1 → ((1 / 𝑥) ∈ V ↔ 1 ∈ V)) | |
| 23 | 1, 22 | mpbiri 168 | . . . . . . . 8 ⊢ ((1 / 𝑥) = 1 → (1 / 𝑥) ∈ V) |
| 24 | elsng 3653 | . . . . . . . 8 ⊢ ((1 / 𝑥) ∈ V → ((1 / 𝑥) ∈ {1} ↔ (1 / 𝑥) = 1)) | |
| 25 | 23, 24 | syl 14 | . . . . . . 7 ⊢ ((1 / 𝑥) = 1 → ((1 / 𝑥) ∈ {1} ↔ (1 / 𝑥) = 1)) |
| 26 | 25 | ibir 177 | . . . . . 6 ⊢ ((1 / 𝑥) = 1 → (1 / 𝑥) ∈ {1}) |
| 27 | 21, 26 | syl 14 | . . . . 5 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) ∈ {1}) |
| 28 | 27 | adantr 276 | . . . 4 ⊢ ((𝑥 ∈ {1} ∧ 𝑥 # 0) → (1 / 𝑥) ∈ {1}) |
| 29 | 6, 18, 2, 28 | expcl2lemap 10718 | . . 3 ⊢ ((1 ∈ {1} ∧ 1 # 0 ∧ 𝑁 ∈ ℤ) → (1↑𝑁) ∈ {1}) |
| 30 | 2, 3, 29 | mp3an12 1340 | . 2 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) ∈ {1}) |
| 31 | elsni 3656 | . 2 ⊢ ((1↑𝑁) ∈ {1} → (1↑𝑁) = 1) | |
| 32 | 30, 31 | syl 14 | 1 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ⊆ wss 3170 {csn 3638 class class class wbr 4051 (class class class)co 5957 ℂcc 7943 0cc0 7945 1c1 7946 · cmul 7950 # cap 8674 / cdiv 8765 ℤcz 9392 ↑cexp 10705 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-n0 9316 df-z 9393 df-uz 9669 df-seqfrec 10615 df-exp 10706 |
| This theorem is referenced by: exprecap 10747 sq1 10800 iexpcyc 10811 binom1p 11871 binom11 11872 esum 12048 ege2le3 12057 eirraplem 12163 odzdvds 12643 ef2kpi 15353 lgseisenlem1 15622 lgseisenlem4 15625 lgseisen 15626 lgsquadlem1 15629 lgsquad2lem1 15633 m1lgs 15637 |
| Copyright terms: Public domain | W3C validator |