Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1exp | GIF version |
Description: Value of one raised to a nonnegative integer power. (Contributed by NM, 15-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
1exp | ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1ex 7915 | . . . 4 ⊢ 1 ∈ V | |
2 | 1 | snid 3614 | . . 3 ⊢ 1 ∈ {1} |
3 | 1ap0 8509 | . . 3 ⊢ 1 # 0 | |
4 | ax-1cn 7867 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | snssi 3724 | . . . . 5 ⊢ (1 ∈ ℂ → {1} ⊆ ℂ) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ {1} ⊆ ℂ |
7 | elsni 3601 | . . . . . 6 ⊢ (𝑥 ∈ {1} → 𝑥 = 1) | |
8 | elsni 3601 | . . . . . 6 ⊢ (𝑦 ∈ {1} → 𝑦 = 1) | |
9 | oveq12 5862 | . . . . . . 7 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1)) | |
10 | 1t1e1 9030 | . . . . . . 7 ⊢ (1 · 1) = 1 | |
11 | 9, 10 | eqtrdi 2219 | . . . . . 6 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = 1) |
12 | 7, 8, 11 | syl2an 287 | . . . . 5 ⊢ ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) = 1) |
13 | eleq1 2233 | . . . . . . . 8 ⊢ ((𝑥 · 𝑦) = 1 → ((𝑥 · 𝑦) ∈ V ↔ 1 ∈ V)) | |
14 | 1, 13 | mpbiri 167 | . . . . . . 7 ⊢ ((𝑥 · 𝑦) = 1 → (𝑥 · 𝑦) ∈ V) |
15 | elsng 3598 | . . . . . . 7 ⊢ ((𝑥 · 𝑦) ∈ V → ((𝑥 · 𝑦) ∈ {1} ↔ (𝑥 · 𝑦) = 1)) | |
16 | 14, 15 | syl 14 | . . . . . 6 ⊢ ((𝑥 · 𝑦) = 1 → ((𝑥 · 𝑦) ∈ {1} ↔ (𝑥 · 𝑦) = 1)) |
17 | 16 | ibir 176 | . . . . 5 ⊢ ((𝑥 · 𝑦) = 1 → (𝑥 · 𝑦) ∈ {1}) |
18 | 12, 17 | syl 14 | . . . 4 ⊢ ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) ∈ {1}) |
19 | 7 | oveq2d 5869 | . . . . . . 7 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) = (1 / 1)) |
20 | 1div1e1 8621 | . . . . . . 7 ⊢ (1 / 1) = 1 | |
21 | 19, 20 | eqtrdi 2219 | . . . . . 6 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) = 1) |
22 | eleq1 2233 | . . . . . . . . 9 ⊢ ((1 / 𝑥) = 1 → ((1 / 𝑥) ∈ V ↔ 1 ∈ V)) | |
23 | 1, 22 | mpbiri 167 | . . . . . . . 8 ⊢ ((1 / 𝑥) = 1 → (1 / 𝑥) ∈ V) |
24 | elsng 3598 | . . . . . . . 8 ⊢ ((1 / 𝑥) ∈ V → ((1 / 𝑥) ∈ {1} ↔ (1 / 𝑥) = 1)) | |
25 | 23, 24 | syl 14 | . . . . . . 7 ⊢ ((1 / 𝑥) = 1 → ((1 / 𝑥) ∈ {1} ↔ (1 / 𝑥) = 1)) |
26 | 25 | ibir 176 | . . . . . 6 ⊢ ((1 / 𝑥) = 1 → (1 / 𝑥) ∈ {1}) |
27 | 21, 26 | syl 14 | . . . . 5 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) ∈ {1}) |
28 | 27 | adantr 274 | . . . 4 ⊢ ((𝑥 ∈ {1} ∧ 𝑥 # 0) → (1 / 𝑥) ∈ {1}) |
29 | 6, 18, 2, 28 | expcl2lemap 10488 | . . 3 ⊢ ((1 ∈ {1} ∧ 1 # 0 ∧ 𝑁 ∈ ℤ) → (1↑𝑁) ∈ {1}) |
30 | 2, 3, 29 | mp3an12 1322 | . 2 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) ∈ {1}) |
31 | elsni 3601 | . 2 ⊢ ((1↑𝑁) ∈ {1} → (1↑𝑁) = 1) | |
32 | 30, 31 | syl 14 | 1 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 Vcvv 2730 ⊆ wss 3121 {csn 3583 class class class wbr 3989 (class class class)co 5853 ℂcc 7772 0cc0 7774 1c1 7775 · cmul 7779 # cap 8500 / cdiv 8589 ℤcz 9212 ↑cexp 10475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-seqfrec 10402 df-exp 10476 |
This theorem is referenced by: exprecap 10517 sq1 10569 iexpcyc 10580 binom1p 11448 binom11 11449 esum 11625 ege2le3 11634 eirraplem 11739 odzdvds 12199 ef2kpi 13521 |
Copyright terms: Public domain | W3C validator |