ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1exp GIF version

Theorem 1exp 10662
Description: Value of one raised to a nonnegative integer power. (Contributed by NM, 15-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
1exp (𝑁 ∈ ℤ → (1↑𝑁) = 1)

Proof of Theorem 1exp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1ex 8023 . . . 4 1 ∈ V
21snid 3654 . . 3 1 ∈ {1}
3 1ap0 8619 . . 3 1 # 0
4 ax-1cn 7974 . . . . 5 1 ∈ ℂ
5 snssi 3767 . . . . 5 (1 ∈ ℂ → {1} ⊆ ℂ)
64, 5ax-mp 5 . . . 4 {1} ⊆ ℂ
7 elsni 3641 . . . . . 6 (𝑥 ∈ {1} → 𝑥 = 1)
8 elsni 3641 . . . . . 6 (𝑦 ∈ {1} → 𝑦 = 1)
9 oveq12 5932 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1))
10 1t1e1 9145 . . . . . . 7 (1 · 1) = 1
119, 10eqtrdi 2245 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = 1)
127, 8, 11syl2an 289 . . . . 5 ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) = 1)
13 eleq1 2259 . . . . . . . 8 ((𝑥 · 𝑦) = 1 → ((𝑥 · 𝑦) ∈ V ↔ 1 ∈ V))
141, 13mpbiri 168 . . . . . . 7 ((𝑥 · 𝑦) = 1 → (𝑥 · 𝑦) ∈ V)
15 elsng 3638 . . . . . . 7 ((𝑥 · 𝑦) ∈ V → ((𝑥 · 𝑦) ∈ {1} ↔ (𝑥 · 𝑦) = 1))
1614, 15syl 14 . . . . . 6 ((𝑥 · 𝑦) = 1 → ((𝑥 · 𝑦) ∈ {1} ↔ (𝑥 · 𝑦) = 1))
1716ibir 177 . . . . 5 ((𝑥 · 𝑦) = 1 → (𝑥 · 𝑦) ∈ {1})
1812, 17syl 14 . . . 4 ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) ∈ {1})
197oveq2d 5939 . . . . . . 7 (𝑥 ∈ {1} → (1 / 𝑥) = (1 / 1))
20 1div1e1 8733 . . . . . . 7 (1 / 1) = 1
2119, 20eqtrdi 2245 . . . . . 6 (𝑥 ∈ {1} → (1 / 𝑥) = 1)
22 eleq1 2259 . . . . . . . . 9 ((1 / 𝑥) = 1 → ((1 / 𝑥) ∈ V ↔ 1 ∈ V))
231, 22mpbiri 168 . . . . . . . 8 ((1 / 𝑥) = 1 → (1 / 𝑥) ∈ V)
24 elsng 3638 . . . . . . . 8 ((1 / 𝑥) ∈ V → ((1 / 𝑥) ∈ {1} ↔ (1 / 𝑥) = 1))
2523, 24syl 14 . . . . . . 7 ((1 / 𝑥) = 1 → ((1 / 𝑥) ∈ {1} ↔ (1 / 𝑥) = 1))
2625ibir 177 . . . . . 6 ((1 / 𝑥) = 1 → (1 / 𝑥) ∈ {1})
2721, 26syl 14 . . . . 5 (𝑥 ∈ {1} → (1 / 𝑥) ∈ {1})
2827adantr 276 . . . 4 ((𝑥 ∈ {1} ∧ 𝑥 # 0) → (1 / 𝑥) ∈ {1})
296, 18, 2, 28expcl2lemap 10645 . . 3 ((1 ∈ {1} ∧ 1 # 0 ∧ 𝑁 ∈ ℤ) → (1↑𝑁) ∈ {1})
302, 3, 29mp3an12 1338 . 2 (𝑁 ∈ ℤ → (1↑𝑁) ∈ {1})
31 elsni 3641 . 2 ((1↑𝑁) ∈ {1} → (1↑𝑁) = 1)
3230, 31syl 14 1 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763  wss 3157  {csn 3623   class class class wbr 4034  (class class class)co 5923  cc 7879  0cc0 7881  1c1 7882   · cmul 7886   # cap 8610   / cdiv 8701  cz 9328  cexp 10632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-frec 6450  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-n0 9252  df-z 9329  df-uz 9604  df-seqfrec 10542  df-exp 10633
This theorem is referenced by:  exprecap  10674  sq1  10727  iexpcyc  10738  binom1p  11652  binom11  11653  esum  11829  ege2le3  11838  eirraplem  11944  odzdvds  12424  ef2kpi  15052  lgseisenlem1  15321  lgseisenlem4  15324  lgseisen  15325  lgsquadlem1  15328  lgsquad2lem1  15332  m1lgs  15336
  Copyright terms: Public domain W3C validator