Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1exp | GIF version |
Description: Value of one raised to a nonnegative integer power. (Contributed by NM, 15-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
1exp | ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1ex 7890 | . . . 4 ⊢ 1 ∈ V | |
2 | 1 | snid 3606 | . . 3 ⊢ 1 ∈ {1} |
3 | 1ap0 8484 | . . 3 ⊢ 1 # 0 | |
4 | ax-1cn 7842 | . . . . 5 ⊢ 1 ∈ ℂ | |
5 | snssi 3716 | . . . . 5 ⊢ (1 ∈ ℂ → {1} ⊆ ℂ) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ {1} ⊆ ℂ |
7 | elsni 3593 | . . . . . 6 ⊢ (𝑥 ∈ {1} → 𝑥 = 1) | |
8 | elsni 3593 | . . . . . 6 ⊢ (𝑦 ∈ {1} → 𝑦 = 1) | |
9 | oveq12 5850 | . . . . . . 7 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1)) | |
10 | 1t1e1 9005 | . . . . . . 7 ⊢ (1 · 1) = 1 | |
11 | 9, 10 | eqtrdi 2214 | . . . . . 6 ⊢ ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = 1) |
12 | 7, 8, 11 | syl2an 287 | . . . . 5 ⊢ ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) = 1) |
13 | eleq1 2228 | . . . . . . . 8 ⊢ ((𝑥 · 𝑦) = 1 → ((𝑥 · 𝑦) ∈ V ↔ 1 ∈ V)) | |
14 | 1, 13 | mpbiri 167 | . . . . . . 7 ⊢ ((𝑥 · 𝑦) = 1 → (𝑥 · 𝑦) ∈ V) |
15 | elsng 3590 | . . . . . . 7 ⊢ ((𝑥 · 𝑦) ∈ V → ((𝑥 · 𝑦) ∈ {1} ↔ (𝑥 · 𝑦) = 1)) | |
16 | 14, 15 | syl 14 | . . . . . 6 ⊢ ((𝑥 · 𝑦) = 1 → ((𝑥 · 𝑦) ∈ {1} ↔ (𝑥 · 𝑦) = 1)) |
17 | 16 | ibir 176 | . . . . 5 ⊢ ((𝑥 · 𝑦) = 1 → (𝑥 · 𝑦) ∈ {1}) |
18 | 12, 17 | syl 14 | . . . 4 ⊢ ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) ∈ {1}) |
19 | 7 | oveq2d 5857 | . . . . . . 7 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) = (1 / 1)) |
20 | 1div1e1 8596 | . . . . . . 7 ⊢ (1 / 1) = 1 | |
21 | 19, 20 | eqtrdi 2214 | . . . . . 6 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) = 1) |
22 | eleq1 2228 | . . . . . . . . 9 ⊢ ((1 / 𝑥) = 1 → ((1 / 𝑥) ∈ V ↔ 1 ∈ V)) | |
23 | 1, 22 | mpbiri 167 | . . . . . . . 8 ⊢ ((1 / 𝑥) = 1 → (1 / 𝑥) ∈ V) |
24 | elsng 3590 | . . . . . . . 8 ⊢ ((1 / 𝑥) ∈ V → ((1 / 𝑥) ∈ {1} ↔ (1 / 𝑥) = 1)) | |
25 | 23, 24 | syl 14 | . . . . . . 7 ⊢ ((1 / 𝑥) = 1 → ((1 / 𝑥) ∈ {1} ↔ (1 / 𝑥) = 1)) |
26 | 25 | ibir 176 | . . . . . 6 ⊢ ((1 / 𝑥) = 1 → (1 / 𝑥) ∈ {1}) |
27 | 21, 26 | syl 14 | . . . . 5 ⊢ (𝑥 ∈ {1} → (1 / 𝑥) ∈ {1}) |
28 | 27 | adantr 274 | . . . 4 ⊢ ((𝑥 ∈ {1} ∧ 𝑥 # 0) → (1 / 𝑥) ∈ {1}) |
29 | 6, 18, 2, 28 | expcl2lemap 10463 | . . 3 ⊢ ((1 ∈ {1} ∧ 1 # 0 ∧ 𝑁 ∈ ℤ) → (1↑𝑁) ∈ {1}) |
30 | 2, 3, 29 | mp3an12 1317 | . 2 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) ∈ {1}) |
31 | elsni 3593 | . 2 ⊢ ((1↑𝑁) ∈ {1} → (1↑𝑁) = 1) | |
32 | 30, 31 | syl 14 | 1 ⊢ (𝑁 ∈ ℤ → (1↑𝑁) = 1) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 Vcvv 2725 ⊆ wss 3115 {csn 3575 class class class wbr 3981 (class class class)co 5841 ℂcc 7747 0cc0 7749 1c1 7750 · cmul 7754 # cap 8475 / cdiv 8564 ℤcz 9187 ↑cexp 10450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-nul 4107 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-iinf 4564 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-mulrcl 7848 ax-addcom 7849 ax-mulcom 7850 ax-addass 7851 ax-mulass 7852 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-1rid 7856 ax-0id 7857 ax-rnegex 7858 ax-precex 7859 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 ax-pre-mulgt0 7866 ax-pre-mulext 7867 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-if 3520 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-tr 4080 df-id 4270 df-po 4273 df-iso 4274 df-iord 4343 df-on 4345 df-ilim 4346 df-suc 4348 df-iom 4567 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-recs 6269 df-frec 6355 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-reap 8469 df-ap 8476 df-div 8565 df-inn 8854 df-n0 9111 df-z 9188 df-uz 9463 df-seqfrec 10377 df-exp 10451 |
This theorem is referenced by: exprecap 10492 sq1 10544 iexpcyc 10555 binom1p 11422 binom11 11423 esum 11599 ege2le3 11608 eirraplem 11713 odzdvds 12173 ef2kpi 13327 |
Copyright terms: Public domain | W3C validator |