ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1exp GIF version

Theorem 1exp 10735
Description: Value of one raised to a nonnegative integer power. (Contributed by NM, 15-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
1exp (𝑁 ∈ ℤ → (1↑𝑁) = 1)

Proof of Theorem 1exp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1ex 8087 . . . 4 1 ∈ V
21snid 3669 . . 3 1 ∈ {1}
3 1ap0 8683 . . 3 1 # 0
4 ax-1cn 8038 . . . . 5 1 ∈ ℂ
5 snssi 3783 . . . . 5 (1 ∈ ℂ → {1} ⊆ ℂ)
64, 5ax-mp 5 . . . 4 {1} ⊆ ℂ
7 elsni 3656 . . . . . 6 (𝑥 ∈ {1} → 𝑥 = 1)
8 elsni 3656 . . . . . 6 (𝑦 ∈ {1} → 𝑦 = 1)
9 oveq12 5966 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = (1 · 1))
10 1t1e1 9209 . . . . . . 7 (1 · 1) = 1
119, 10eqtrdi 2255 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 1) → (𝑥 · 𝑦) = 1)
127, 8, 11syl2an 289 . . . . 5 ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) = 1)
13 eleq1 2269 . . . . . . . 8 ((𝑥 · 𝑦) = 1 → ((𝑥 · 𝑦) ∈ V ↔ 1 ∈ V))
141, 13mpbiri 168 . . . . . . 7 ((𝑥 · 𝑦) = 1 → (𝑥 · 𝑦) ∈ V)
15 elsng 3653 . . . . . . 7 ((𝑥 · 𝑦) ∈ V → ((𝑥 · 𝑦) ∈ {1} ↔ (𝑥 · 𝑦) = 1))
1614, 15syl 14 . . . . . 6 ((𝑥 · 𝑦) = 1 → ((𝑥 · 𝑦) ∈ {1} ↔ (𝑥 · 𝑦) = 1))
1716ibir 177 . . . . 5 ((𝑥 · 𝑦) = 1 → (𝑥 · 𝑦) ∈ {1})
1812, 17syl 14 . . . 4 ((𝑥 ∈ {1} ∧ 𝑦 ∈ {1}) → (𝑥 · 𝑦) ∈ {1})
197oveq2d 5973 . . . . . . 7 (𝑥 ∈ {1} → (1 / 𝑥) = (1 / 1))
20 1div1e1 8797 . . . . . . 7 (1 / 1) = 1
2119, 20eqtrdi 2255 . . . . . 6 (𝑥 ∈ {1} → (1 / 𝑥) = 1)
22 eleq1 2269 . . . . . . . . 9 ((1 / 𝑥) = 1 → ((1 / 𝑥) ∈ V ↔ 1 ∈ V))
231, 22mpbiri 168 . . . . . . . 8 ((1 / 𝑥) = 1 → (1 / 𝑥) ∈ V)
24 elsng 3653 . . . . . . . 8 ((1 / 𝑥) ∈ V → ((1 / 𝑥) ∈ {1} ↔ (1 / 𝑥) = 1))
2523, 24syl 14 . . . . . . 7 ((1 / 𝑥) = 1 → ((1 / 𝑥) ∈ {1} ↔ (1 / 𝑥) = 1))
2625ibir 177 . . . . . 6 ((1 / 𝑥) = 1 → (1 / 𝑥) ∈ {1})
2721, 26syl 14 . . . . 5 (𝑥 ∈ {1} → (1 / 𝑥) ∈ {1})
2827adantr 276 . . . 4 ((𝑥 ∈ {1} ∧ 𝑥 # 0) → (1 / 𝑥) ∈ {1})
296, 18, 2, 28expcl2lemap 10718 . . 3 ((1 ∈ {1} ∧ 1 # 0 ∧ 𝑁 ∈ ℤ) → (1↑𝑁) ∈ {1})
302, 3, 29mp3an12 1340 . 2 (𝑁 ∈ ℤ → (1↑𝑁) ∈ {1})
31 elsni 3656 . 2 ((1↑𝑁) ∈ {1} → (1↑𝑁) = 1)
3230, 31syl 14 1 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  Vcvv 2773  wss 3170  {csn 3638   class class class wbr 4051  (class class class)co 5957  cc 7943  0cc0 7945  1c1 7946   · cmul 7950   # cap 8674   / cdiv 8765  cz 9392  cexp 10705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669  df-seqfrec 10615  df-exp 10706
This theorem is referenced by:  exprecap  10747  sq1  10800  iexpcyc  10811  binom1p  11871  binom11  11872  esum  12048  ege2le3  12057  eirraplem  12163  odzdvds  12643  ef2kpi  15353  lgseisenlem1  15622  lgseisenlem4  15625  lgseisen  15626  lgsquadlem1  15629  lgsquad2lem1  15633  m1lgs  15637
  Copyright terms: Public domain W3C validator