ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltnqpri GIF version

Theorem ltnqpri 7624
Description: We can order fractions via <Q or <P. (Contributed by Jim Kingdon, 8-Jan-2021.)
Assertion
Ref Expression
ltnqpri (𝐴 <Q 𝐵 → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)
Distinct variable groups:   𝐴,𝑙   𝑢,𝐴   𝐵,𝑙   𝑢,𝐵

Proof of Theorem ltnqpri
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7395 . . . . . . . 8 <Q ⊆ (Q × Q)
21brel 4696 . . . . . . 7 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
32simpld 112 . . . . . 6 (𝐴 <Q 𝐵𝐴Q)
4 nqprlu 7577 . . . . . 6 (𝐴Q → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
53, 4syl 14 . . . . 5 (𝐴 <Q 𝐵 → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
62simprd 114 . . . . . 6 (𝐴 <Q 𝐵𝐵Q)
7 nqprlu 7577 . . . . . 6 (𝐵Q → ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P)
86, 7syl 14 . . . . 5 (𝐴 <Q 𝐵 → ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P)
9 ltdfpr 7536 . . . . 5 ((⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P ∧ ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P) → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))))
105, 8, 9syl2anc 411 . . . 4 (𝐴 <Q 𝐵 → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))))
11 vex 2755 . . . . . . 7 𝑥 ∈ V
12 breq2 4022 . . . . . . 7 (𝑢 = 𝑥 → (𝐴 <Q 𝑢𝐴 <Q 𝑥))
13 ltnqex 7579 . . . . . . . 8 {𝑙𝑙 <Q 𝐴} ∈ V
14 gtnqex 7580 . . . . . . . 8 {𝑢𝐴 <Q 𝑢} ∈ V
1513, 14op2nd 6173 . . . . . . 7 (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) = {𝑢𝐴 <Q 𝑢}
1611, 12, 15elab2 2900 . . . . . 6 (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ↔ 𝐴 <Q 𝑥)
17 breq1 4021 . . . . . . 7 (𝑙 = 𝑥 → (𝑙 <Q 𝐵𝑥 <Q 𝐵))
18 ltnqex 7579 . . . . . . . 8 {𝑙𝑙 <Q 𝐵} ∈ V
19 gtnqex 7580 . . . . . . . 8 {𝑢𝐵 <Q 𝑢} ∈ V
2018, 19op1st 6172 . . . . . . 7 (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) = {𝑙𝑙 <Q 𝐵}
2111, 17, 20elab2 2900 . . . . . 6 (𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) ↔ 𝑥 <Q 𝐵)
2216, 21anbi12i 460 . . . . 5 ((𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ↔ (𝐴 <Q 𝑥𝑥 <Q 𝐵))
2322rexbii 2497 . . . 4 (∃𝑥Q (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ↔ ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
2410, 23bitrdi 196 . . 3 (𝐴 <Q 𝐵 → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
25 ltbtwnnqq 7445 . . 3 (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
2624, 25bitr4di 198 . 2 (𝐴 <Q 𝐵 → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ↔ 𝐴 <Q 𝐵))
2726ibir 177 1 (𝐴 <Q 𝐵 → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2160  {cab 2175  wrex 2469  cop 3610   class class class wbr 4018  cfv 5235  1st c1st 6164  2nd c2nd 6165  Qcnq 7310   <Q cltq 7315  Pcnp 7321  <P cltp 7325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4307  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-1o 6442  df-oadd 6446  df-omul 6447  df-er 6560  df-ec 6562  df-qs 6566  df-ni 7334  df-pli 7335  df-mi 7336  df-lti 7337  df-plpq 7374  df-mpq 7375  df-enq 7377  df-nqqs 7378  df-plqqs 7379  df-mqqs 7380  df-1nqqs 7381  df-rq 7382  df-ltnqqs 7383  df-inp 7496  df-iltp 7500
This theorem is referenced by:  caucvgprprlemk  7713  caucvgprprlemloccalc  7714  caucvgprprlemnjltk  7721  caucvgprprlemlol  7728  caucvgprprlemupu  7730  suplocexprlemloc  7751
  Copyright terms: Public domain W3C validator