Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltnqpri | GIF version |
Description: We can order fractions via <Q or <P. (Contributed by Jim Kingdon, 8-Jan-2021.) |
Ref | Expression |
---|---|
ltnqpri | ⊢ (𝐴 <Q 𝐵 → 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelnq 7339 | . . . . . . . 8 ⊢ <Q ⊆ (Q × Q) | |
2 | 1 | brel 4672 | . . . . . . 7 ⊢ (𝐴 <Q 𝐵 → (𝐴 ∈ Q ∧ 𝐵 ∈ Q)) |
3 | 2 | simpld 112 | . . . . . 6 ⊢ (𝐴 <Q 𝐵 → 𝐴 ∈ Q) |
4 | nqprlu 7521 | . . . . . 6 ⊢ (𝐴 ∈ Q → 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉 ∈ P) | |
5 | 3, 4 | syl 14 | . . . . 5 ⊢ (𝐴 <Q 𝐵 → 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉 ∈ P) |
6 | 2 | simprd 114 | . . . . . 6 ⊢ (𝐴 <Q 𝐵 → 𝐵 ∈ Q) |
7 | nqprlu 7521 | . . . . . 6 ⊢ (𝐵 ∈ Q → 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ∈ P) | |
8 | 6, 7 | syl 14 | . . . . 5 ⊢ (𝐴 <Q 𝐵 → 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ∈ P) |
9 | ltdfpr 7480 | . . . . 5 ⊢ ((〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉 ∈ P ∧ 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ∈ P) → (〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ↔ ∃𝑥 ∈ Q (𝑥 ∈ (2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)))) | |
10 | 5, 8, 9 | syl2anc 411 | . . . 4 ⊢ (𝐴 <Q 𝐵 → (〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ↔ ∃𝑥 ∈ Q (𝑥 ∈ (2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)))) |
11 | vex 2738 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
12 | breq2 4002 | . . . . . . 7 ⊢ (𝑢 = 𝑥 → (𝐴 <Q 𝑢 ↔ 𝐴 <Q 𝑥)) | |
13 | ltnqex 7523 | . . . . . . . 8 ⊢ {𝑙 ∣ 𝑙 <Q 𝐴} ∈ V | |
14 | gtnqex 7524 | . . . . . . . 8 ⊢ {𝑢 ∣ 𝐴 <Q 𝑢} ∈ V | |
15 | 13, 14 | op2nd 6138 | . . . . . . 7 ⊢ (2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) = {𝑢 ∣ 𝐴 <Q 𝑢} |
16 | 11, 12, 15 | elab2 2883 | . . . . . 6 ⊢ (𝑥 ∈ (2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ↔ 𝐴 <Q 𝑥) |
17 | breq1 4001 | . . . . . . 7 ⊢ (𝑙 = 𝑥 → (𝑙 <Q 𝐵 ↔ 𝑥 <Q 𝐵)) | |
18 | ltnqex 7523 | . . . . . . . 8 ⊢ {𝑙 ∣ 𝑙 <Q 𝐵} ∈ V | |
19 | gtnqex 7524 | . . . . . . . 8 ⊢ {𝑢 ∣ 𝐵 <Q 𝑢} ∈ V | |
20 | 18, 19 | op1st 6137 | . . . . . . 7 ⊢ (1st ‘〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉) = {𝑙 ∣ 𝑙 <Q 𝐵} |
21 | 11, 17, 20 | elab2 2883 | . . . . . 6 ⊢ (𝑥 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉) ↔ 𝑥 <Q 𝐵) |
22 | 16, 21 | anbi12i 460 | . . . . 5 ⊢ ((𝑥 ∈ (2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)) ↔ (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) |
23 | 22 | rexbii 2482 | . . . 4 ⊢ (∃𝑥 ∈ Q (𝑥 ∈ (2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)) ↔ ∃𝑥 ∈ Q (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) |
24 | 10, 23 | bitrdi 196 | . . 3 ⊢ (𝐴 <Q 𝐵 → (〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ↔ ∃𝑥 ∈ Q (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵))) |
25 | ltbtwnnqq 7389 | . . 3 ⊢ (𝐴 <Q 𝐵 ↔ ∃𝑥 ∈ Q (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) | |
26 | 24, 25 | bitr4di 198 | . 2 ⊢ (𝐴 <Q 𝐵 → (〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ↔ 𝐴 <Q 𝐵)) |
27 | 26 | ibir 177 | 1 ⊢ (𝐴 <Q 𝐵 → 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2146 {cab 2161 ∃wrex 2454 〈cop 3592 class class class wbr 3998 ‘cfv 5208 1st c1st 6129 2nd c2nd 6130 Qcnq 7254 <Q cltq 7259 Pcnp 7265 <P cltp 7269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-eprel 4283 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-irdg 6361 df-1o 6407 df-oadd 6411 df-omul 6412 df-er 6525 df-ec 6527 df-qs 6531 df-ni 7278 df-pli 7279 df-mi 7280 df-lti 7281 df-plpq 7318 df-mpq 7319 df-enq 7321 df-nqqs 7322 df-plqqs 7323 df-mqqs 7324 df-1nqqs 7325 df-rq 7326 df-ltnqqs 7327 df-inp 7440 df-iltp 7444 |
This theorem is referenced by: caucvgprprlemk 7657 caucvgprprlemloccalc 7658 caucvgprprlemnjltk 7665 caucvgprprlemlol 7672 caucvgprprlemupu 7674 suplocexprlemloc 7695 |
Copyright terms: Public domain | W3C validator |