ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltnqpri GIF version

Theorem ltnqpri 7153
Description: We can order fractions via <Q or <P. (Contributed by Jim Kingdon, 8-Jan-2021.)
Assertion
Ref Expression
ltnqpri (𝐴 <Q 𝐵 → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)
Distinct variable groups:   𝐴,𝑙   𝑢,𝐴   𝐵,𝑙   𝑢,𝐵

Proof of Theorem ltnqpri
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ltrelnq 6924 . . . . . . . 8 <Q ⊆ (Q × Q)
21brel 4490 . . . . . . 7 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
32simpld 110 . . . . . 6 (𝐴 <Q 𝐵𝐴Q)
4 nqprlu 7106 . . . . . 6 (𝐴Q → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
53, 4syl 14 . . . . 5 (𝐴 <Q 𝐵 → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
62simprd 112 . . . . . 6 (𝐴 <Q 𝐵𝐵Q)
7 nqprlu 7106 . . . . . 6 (𝐵Q → ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P)
86, 7syl 14 . . . . 5 (𝐴 <Q 𝐵 → ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P)
9 ltdfpr 7065 . . . . 5 ((⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P ∧ ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P) → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))))
105, 8, 9syl2anc 403 . . . 4 (𝐴 <Q 𝐵 → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))))
11 vex 2622 . . . . . . 7 𝑥 ∈ V
12 breq2 3849 . . . . . . 7 (𝑢 = 𝑥 → (𝐴 <Q 𝑢𝐴 <Q 𝑥))
13 ltnqex 7108 . . . . . . . 8 {𝑙𝑙 <Q 𝐴} ∈ V
14 gtnqex 7109 . . . . . . . 8 {𝑢𝐴 <Q 𝑢} ∈ V
1513, 14op2nd 5918 . . . . . . 7 (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) = {𝑢𝐴 <Q 𝑢}
1611, 12, 15elab2 2763 . . . . . 6 (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ↔ 𝐴 <Q 𝑥)
17 breq1 3848 . . . . . . 7 (𝑙 = 𝑥 → (𝑙 <Q 𝐵𝑥 <Q 𝐵))
18 ltnqex 7108 . . . . . . . 8 {𝑙𝑙 <Q 𝐵} ∈ V
19 gtnqex 7109 . . . . . . . 8 {𝑢𝐵 <Q 𝑢} ∈ V
2018, 19op1st 5917 . . . . . . 7 (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) = {𝑙𝑙 <Q 𝐵}
2111, 17, 20elab2 2763 . . . . . 6 (𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) ↔ 𝑥 <Q 𝐵)
2216, 21anbi12i 448 . . . . 5 ((𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ↔ (𝐴 <Q 𝑥𝑥 <Q 𝐵))
2322rexbii 2385 . . . 4 (∃𝑥Q (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ↔ ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
2410, 23syl6bb 194 . . 3 (𝐴 <Q 𝐵 → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
25 ltbtwnnqq 6974 . . 3 (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
2624, 25syl6bbr 196 . 2 (𝐴 <Q 𝐵 → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ↔ 𝐴 <Q 𝐵))
2726ibir 175 1 (𝐴 <Q 𝐵 → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wcel 1438  {cab 2074  wrex 2360  cop 3449   class class class wbr 3845  cfv 5015  1st c1st 5909  2nd c2nd 5910  Qcnq 6839   <Q cltq 6844  Pcnp 6850  <P cltp 6854
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-eprel 4116  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-1o 6181  df-oadd 6185  df-omul 6186  df-er 6292  df-ec 6294  df-qs 6298  df-ni 6863  df-pli 6864  df-mi 6865  df-lti 6866  df-plpq 6903  df-mpq 6904  df-enq 6906  df-nqqs 6907  df-plqqs 6908  df-mqqs 6909  df-1nqqs 6910  df-rq 6911  df-ltnqqs 6912  df-inp 7025  df-iltp 7029
This theorem is referenced by:  caucvgprprlemk  7242  caucvgprprlemloccalc  7243  caucvgprprlemnjltk  7250  caucvgprprlemlol  7257  caucvgprprlemupu  7259
  Copyright terms: Public domain W3C validator