Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltnqpri | GIF version |
Description: We can order fractions via <Q or <P. (Contributed by Jim Kingdon, 8-Jan-2021.) |
Ref | Expression |
---|---|
ltnqpri | ⊢ (𝐴 <Q 𝐵 → 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelnq 7327 | . . . . . . . 8 ⊢ <Q ⊆ (Q × Q) | |
2 | 1 | brel 4663 | . . . . . . 7 ⊢ (𝐴 <Q 𝐵 → (𝐴 ∈ Q ∧ 𝐵 ∈ Q)) |
3 | 2 | simpld 111 | . . . . . 6 ⊢ (𝐴 <Q 𝐵 → 𝐴 ∈ Q) |
4 | nqprlu 7509 | . . . . . 6 ⊢ (𝐴 ∈ Q → 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉 ∈ P) | |
5 | 3, 4 | syl 14 | . . . . 5 ⊢ (𝐴 <Q 𝐵 → 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉 ∈ P) |
6 | 2 | simprd 113 | . . . . . 6 ⊢ (𝐴 <Q 𝐵 → 𝐵 ∈ Q) |
7 | nqprlu 7509 | . . . . . 6 ⊢ (𝐵 ∈ Q → 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ∈ P) | |
8 | 6, 7 | syl 14 | . . . . 5 ⊢ (𝐴 <Q 𝐵 → 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ∈ P) |
9 | ltdfpr 7468 | . . . . 5 ⊢ ((〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉 ∈ P ∧ 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ∈ P) → (〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ↔ ∃𝑥 ∈ Q (𝑥 ∈ (2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)))) | |
10 | 5, 8, 9 | syl2anc 409 | . . . 4 ⊢ (𝐴 <Q 𝐵 → (〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ↔ ∃𝑥 ∈ Q (𝑥 ∈ (2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)))) |
11 | vex 2733 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
12 | breq2 3993 | . . . . . . 7 ⊢ (𝑢 = 𝑥 → (𝐴 <Q 𝑢 ↔ 𝐴 <Q 𝑥)) | |
13 | ltnqex 7511 | . . . . . . . 8 ⊢ {𝑙 ∣ 𝑙 <Q 𝐴} ∈ V | |
14 | gtnqex 7512 | . . . . . . . 8 ⊢ {𝑢 ∣ 𝐴 <Q 𝑢} ∈ V | |
15 | 13, 14 | op2nd 6126 | . . . . . . 7 ⊢ (2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) = {𝑢 ∣ 𝐴 <Q 𝑢} |
16 | 11, 12, 15 | elab2 2878 | . . . . . 6 ⊢ (𝑥 ∈ (2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ↔ 𝐴 <Q 𝑥) |
17 | breq1 3992 | . . . . . . 7 ⊢ (𝑙 = 𝑥 → (𝑙 <Q 𝐵 ↔ 𝑥 <Q 𝐵)) | |
18 | ltnqex 7511 | . . . . . . . 8 ⊢ {𝑙 ∣ 𝑙 <Q 𝐵} ∈ V | |
19 | gtnqex 7512 | . . . . . . . 8 ⊢ {𝑢 ∣ 𝐵 <Q 𝑢} ∈ V | |
20 | 18, 19 | op1st 6125 | . . . . . . 7 ⊢ (1st ‘〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉) = {𝑙 ∣ 𝑙 <Q 𝐵} |
21 | 11, 17, 20 | elab2 2878 | . . . . . 6 ⊢ (𝑥 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉) ↔ 𝑥 <Q 𝐵) |
22 | 16, 21 | anbi12i 457 | . . . . 5 ⊢ ((𝑥 ∈ (2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)) ↔ (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) |
23 | 22 | rexbii 2477 | . . . 4 ⊢ (∃𝑥 ∈ Q (𝑥 ∈ (2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)) ↔ ∃𝑥 ∈ Q (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) |
24 | 10, 23 | bitrdi 195 | . . 3 ⊢ (𝐴 <Q 𝐵 → (〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ↔ ∃𝑥 ∈ Q (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵))) |
25 | ltbtwnnqq 7377 | . . 3 ⊢ (𝐴 <Q 𝐵 ↔ ∃𝑥 ∈ Q (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) | |
26 | 24, 25 | bitr4di 197 | . 2 ⊢ (𝐴 <Q 𝐵 → (〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ↔ 𝐴 <Q 𝐵)) |
27 | 26 | ibir 176 | 1 ⊢ (𝐴 <Q 𝐵 → 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2141 {cab 2156 ∃wrex 2449 〈cop 3586 class class class wbr 3989 ‘cfv 5198 1st c1st 6117 2nd c2nd 6118 Qcnq 7242 <Q cltq 7247 Pcnp 7253 <P cltp 7257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-1nqqs 7313 df-rq 7314 df-ltnqqs 7315 df-inp 7428 df-iltp 7432 |
This theorem is referenced by: caucvgprprlemk 7645 caucvgprprlemloccalc 7646 caucvgprprlemnjltk 7653 caucvgprprlemlol 7660 caucvgprprlemupu 7662 suplocexprlemloc 7683 |
Copyright terms: Public domain | W3C validator |