![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltnqpri | GIF version |
Description: We can order fractions via <Q or <P. (Contributed by Jim Kingdon, 8-Jan-2021.) |
Ref | Expression |
---|---|
ltnqpri | ⊢ (𝐴 <Q 𝐵 → 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelnq 7427 | . . . . . . . 8 ⊢ <Q ⊆ (Q × Q) | |
2 | 1 | brel 4712 | . . . . . . 7 ⊢ (𝐴 <Q 𝐵 → (𝐴 ∈ Q ∧ 𝐵 ∈ Q)) |
3 | 2 | simpld 112 | . . . . . 6 ⊢ (𝐴 <Q 𝐵 → 𝐴 ∈ Q) |
4 | nqprlu 7609 | . . . . . 6 ⊢ (𝐴 ∈ Q → 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉 ∈ P) | |
5 | 3, 4 | syl 14 | . . . . 5 ⊢ (𝐴 <Q 𝐵 → 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉 ∈ P) |
6 | 2 | simprd 114 | . . . . . 6 ⊢ (𝐴 <Q 𝐵 → 𝐵 ∈ Q) |
7 | nqprlu 7609 | . . . . . 6 ⊢ (𝐵 ∈ Q → 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ∈ P) | |
8 | 6, 7 | syl 14 | . . . . 5 ⊢ (𝐴 <Q 𝐵 → 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ∈ P) |
9 | ltdfpr 7568 | . . . . 5 ⊢ ((〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉 ∈ P ∧ 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ∈ P) → (〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ↔ ∃𝑥 ∈ Q (𝑥 ∈ (2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)))) | |
10 | 5, 8, 9 | syl2anc 411 | . . . 4 ⊢ (𝐴 <Q 𝐵 → (〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ↔ ∃𝑥 ∈ Q (𝑥 ∈ (2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)))) |
11 | vex 2763 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
12 | breq2 4034 | . . . . . . 7 ⊢ (𝑢 = 𝑥 → (𝐴 <Q 𝑢 ↔ 𝐴 <Q 𝑥)) | |
13 | ltnqex 7611 | . . . . . . . 8 ⊢ {𝑙 ∣ 𝑙 <Q 𝐴} ∈ V | |
14 | gtnqex 7612 | . . . . . . . 8 ⊢ {𝑢 ∣ 𝐴 <Q 𝑢} ∈ V | |
15 | 13, 14 | op2nd 6202 | . . . . . . 7 ⊢ (2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) = {𝑢 ∣ 𝐴 <Q 𝑢} |
16 | 11, 12, 15 | elab2 2909 | . . . . . 6 ⊢ (𝑥 ∈ (2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ↔ 𝐴 <Q 𝑥) |
17 | breq1 4033 | . . . . . . 7 ⊢ (𝑙 = 𝑥 → (𝑙 <Q 𝐵 ↔ 𝑥 <Q 𝐵)) | |
18 | ltnqex 7611 | . . . . . . . 8 ⊢ {𝑙 ∣ 𝑙 <Q 𝐵} ∈ V | |
19 | gtnqex 7612 | . . . . . . . 8 ⊢ {𝑢 ∣ 𝐵 <Q 𝑢} ∈ V | |
20 | 18, 19 | op1st 6201 | . . . . . . 7 ⊢ (1st ‘〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉) = {𝑙 ∣ 𝑙 <Q 𝐵} |
21 | 11, 17, 20 | elab2 2909 | . . . . . 6 ⊢ (𝑥 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉) ↔ 𝑥 <Q 𝐵) |
22 | 16, 21 | anbi12i 460 | . . . . 5 ⊢ ((𝑥 ∈ (2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)) ↔ (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) |
23 | 22 | rexbii 2501 | . . . 4 ⊢ (∃𝑥 ∈ Q (𝑥 ∈ (2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)) ↔ ∃𝑥 ∈ Q (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) |
24 | 10, 23 | bitrdi 196 | . . 3 ⊢ (𝐴 <Q 𝐵 → (〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ↔ ∃𝑥 ∈ Q (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵))) |
25 | ltbtwnnqq 7477 | . . 3 ⊢ (𝐴 <Q 𝐵 ↔ ∃𝑥 ∈ Q (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) | |
26 | 24, 25 | bitr4di 198 | . 2 ⊢ (𝐴 <Q 𝐵 → (〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ↔ 𝐴 <Q 𝐵)) |
27 | 26 | ibir 177 | 1 ⊢ (𝐴 <Q 𝐵 → 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 {cab 2179 ∃wrex 2473 〈cop 3622 class class class wbr 4030 ‘cfv 5255 1st c1st 6193 2nd c2nd 6194 Qcnq 7342 <Q cltq 7347 Pcnp 7353 <P cltp 7357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-eprel 4321 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-1o 6471 df-oadd 6475 df-omul 6476 df-er 6589 df-ec 6591 df-qs 6595 df-ni 7366 df-pli 7367 df-mi 7368 df-lti 7369 df-plpq 7406 df-mpq 7407 df-enq 7409 df-nqqs 7410 df-plqqs 7411 df-mqqs 7412 df-1nqqs 7413 df-rq 7414 df-ltnqqs 7415 df-inp 7528 df-iltp 7532 |
This theorem is referenced by: caucvgprprlemk 7745 caucvgprprlemloccalc 7746 caucvgprprlemnjltk 7753 caucvgprprlemlol 7760 caucvgprprlemupu 7762 suplocexprlemloc 7783 |
Copyright terms: Public domain | W3C validator |