| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltnqpri | GIF version | ||
| Description: We can order fractions via <Q or <P. (Contributed by Jim Kingdon, 8-Jan-2021.) |
| Ref | Expression |
|---|---|
| ltnqpri | ⊢ (𝐴 <Q 𝐵 → 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelnq 7520 | . . . . . . . 8 ⊢ <Q ⊆ (Q × Q) | |
| 2 | 1 | brel 4748 | . . . . . . 7 ⊢ (𝐴 <Q 𝐵 → (𝐴 ∈ Q ∧ 𝐵 ∈ Q)) |
| 3 | 2 | simpld 112 | . . . . . 6 ⊢ (𝐴 <Q 𝐵 → 𝐴 ∈ Q) |
| 4 | nqprlu 7702 | . . . . . 6 ⊢ (𝐴 ∈ Q → 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉 ∈ P) | |
| 5 | 3, 4 | syl 14 | . . . . 5 ⊢ (𝐴 <Q 𝐵 → 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉 ∈ P) |
| 6 | 2 | simprd 114 | . . . . . 6 ⊢ (𝐴 <Q 𝐵 → 𝐵 ∈ Q) |
| 7 | nqprlu 7702 | . . . . . 6 ⊢ (𝐵 ∈ Q → 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ∈ P) | |
| 8 | 6, 7 | syl 14 | . . . . 5 ⊢ (𝐴 <Q 𝐵 → 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ∈ P) |
| 9 | ltdfpr 7661 | . . . . 5 ⊢ ((〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉 ∈ P ∧ 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ∈ P) → (〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ↔ ∃𝑥 ∈ Q (𝑥 ∈ (2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)))) | |
| 10 | 5, 8, 9 | syl2anc 411 | . . . 4 ⊢ (𝐴 <Q 𝐵 → (〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ↔ ∃𝑥 ∈ Q (𝑥 ∈ (2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)))) |
| 11 | vex 2782 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 12 | breq2 4066 | . . . . . . 7 ⊢ (𝑢 = 𝑥 → (𝐴 <Q 𝑢 ↔ 𝐴 <Q 𝑥)) | |
| 13 | ltnqex 7704 | . . . . . . . 8 ⊢ {𝑙 ∣ 𝑙 <Q 𝐴} ∈ V | |
| 14 | gtnqex 7705 | . . . . . . . 8 ⊢ {𝑢 ∣ 𝐴 <Q 𝑢} ∈ V | |
| 15 | 13, 14 | op2nd 6263 | . . . . . . 7 ⊢ (2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) = {𝑢 ∣ 𝐴 <Q 𝑢} |
| 16 | 11, 12, 15 | elab2 2931 | . . . . . 6 ⊢ (𝑥 ∈ (2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ↔ 𝐴 <Q 𝑥) |
| 17 | breq1 4065 | . . . . . . 7 ⊢ (𝑙 = 𝑥 → (𝑙 <Q 𝐵 ↔ 𝑥 <Q 𝐵)) | |
| 18 | ltnqex 7704 | . . . . . . . 8 ⊢ {𝑙 ∣ 𝑙 <Q 𝐵} ∈ V | |
| 19 | gtnqex 7705 | . . . . . . . 8 ⊢ {𝑢 ∣ 𝐵 <Q 𝑢} ∈ V | |
| 20 | 18, 19 | op1st 6262 | . . . . . . 7 ⊢ (1st ‘〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉) = {𝑙 ∣ 𝑙 <Q 𝐵} |
| 21 | 11, 17, 20 | elab2 2931 | . . . . . 6 ⊢ (𝑥 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉) ↔ 𝑥 <Q 𝐵) |
| 22 | 16, 21 | anbi12i 460 | . . . . 5 ⊢ ((𝑥 ∈ (2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)) ↔ (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) |
| 23 | 22 | rexbii 2517 | . . . 4 ⊢ (∃𝑥 ∈ Q (𝑥 ∈ (2nd ‘〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉) ∧ 𝑥 ∈ (1st ‘〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉)) ↔ ∃𝑥 ∈ Q (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) |
| 24 | 10, 23 | bitrdi 196 | . . 3 ⊢ (𝐴 <Q 𝐵 → (〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ↔ ∃𝑥 ∈ Q (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵))) |
| 25 | ltbtwnnqq 7570 | . . 3 ⊢ (𝐴 <Q 𝐵 ↔ ∃𝑥 ∈ Q (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) | |
| 26 | 24, 25 | bitr4di 198 | . 2 ⊢ (𝐴 <Q 𝐵 → (〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉 ↔ 𝐴 <Q 𝐵)) |
| 27 | 26 | ibir 177 | 1 ⊢ (𝐴 <Q 𝐵 → 〈{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}〉<P 〈{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2180 {cab 2195 ∃wrex 2489 〈cop 3649 class class class wbr 4062 ‘cfv 5294 1st c1st 6254 2nd c2nd 6255 Qcnq 7435 <Q cltq 7440 Pcnp 7446 <P cltp 7450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-eprel 4357 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-1o 6532 df-oadd 6536 df-omul 6537 df-er 6650 df-ec 6652 df-qs 6656 df-ni 7459 df-pli 7460 df-mi 7461 df-lti 7462 df-plpq 7499 df-mpq 7500 df-enq 7502 df-nqqs 7503 df-plqqs 7504 df-mqqs 7505 df-1nqqs 7506 df-rq 7507 df-ltnqqs 7508 df-inp 7621 df-iltp 7625 |
| This theorem is referenced by: caucvgprprlemk 7838 caucvgprprlemloccalc 7839 caucvgprprlemnjltk 7846 caucvgprprlemlol 7853 caucvgprprlemupu 7855 suplocexprlemloc 7876 |
| Copyright terms: Public domain | W3C validator |