![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltnqpri | GIF version |
Description: We can order fractions via <Q or <P. (Contributed by Jim Kingdon, 8-Jan-2021.) |
Ref | Expression |
---|---|
ltnqpri | ⊢ (𝐴 <Q 𝐵 → ⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩<P ⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelnq 7377 | . . . . . . . 8 ⊢ <Q ⊆ (Q × Q) | |
2 | 1 | brel 4690 | . . . . . . 7 ⊢ (𝐴 <Q 𝐵 → (𝐴 ∈ Q ∧ 𝐵 ∈ Q)) |
3 | 2 | simpld 112 | . . . . . 6 ⊢ (𝐴 <Q 𝐵 → 𝐴 ∈ Q) |
4 | nqprlu 7559 | . . . . . 6 ⊢ (𝐴 ∈ Q → ⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩ ∈ P) | |
5 | 3, 4 | syl 14 | . . . . 5 ⊢ (𝐴 <Q 𝐵 → ⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩ ∈ P) |
6 | 2 | simprd 114 | . . . . . 6 ⊢ (𝐴 <Q 𝐵 → 𝐵 ∈ Q) |
7 | nqprlu 7559 | . . . . . 6 ⊢ (𝐵 ∈ Q → ⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩ ∈ P) | |
8 | 6, 7 | syl 14 | . . . . 5 ⊢ (𝐴 <Q 𝐵 → ⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩ ∈ P) |
9 | ltdfpr 7518 | . . . . 5 ⊢ ((⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩ ∈ P ∧ ⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩ ∈ P) → (⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩<P ⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩ ↔ ∃𝑥 ∈ Q (𝑥 ∈ (2nd ‘⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st ‘⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩)))) | |
10 | 5, 8, 9 | syl2anc 411 | . . . 4 ⊢ (𝐴 <Q 𝐵 → (⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩<P ⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩ ↔ ∃𝑥 ∈ Q (𝑥 ∈ (2nd ‘⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st ‘⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩)))) |
11 | vex 2752 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
12 | breq2 4019 | . . . . . . 7 ⊢ (𝑢 = 𝑥 → (𝐴 <Q 𝑢 ↔ 𝐴 <Q 𝑥)) | |
13 | ltnqex 7561 | . . . . . . . 8 ⊢ {𝑙 ∣ 𝑙 <Q 𝐴} ∈ V | |
14 | gtnqex 7562 | . . . . . . . 8 ⊢ {𝑢 ∣ 𝐴 <Q 𝑢} ∈ V | |
15 | 13, 14 | op2nd 6161 | . . . . . . 7 ⊢ (2nd ‘⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩) = {𝑢 ∣ 𝐴 <Q 𝑢} |
16 | 11, 12, 15 | elab2 2897 | . . . . . 6 ⊢ (𝑥 ∈ (2nd ‘⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩) ↔ 𝐴 <Q 𝑥) |
17 | breq1 4018 | . . . . . . 7 ⊢ (𝑙 = 𝑥 → (𝑙 <Q 𝐵 ↔ 𝑥 <Q 𝐵)) | |
18 | ltnqex 7561 | . . . . . . . 8 ⊢ {𝑙 ∣ 𝑙 <Q 𝐵} ∈ V | |
19 | gtnqex 7562 | . . . . . . . 8 ⊢ {𝑢 ∣ 𝐵 <Q 𝑢} ∈ V | |
20 | 18, 19 | op1st 6160 | . . . . . . 7 ⊢ (1st ‘⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩) = {𝑙 ∣ 𝑙 <Q 𝐵} |
21 | 11, 17, 20 | elab2 2897 | . . . . . 6 ⊢ (𝑥 ∈ (1st ‘⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩) ↔ 𝑥 <Q 𝐵) |
22 | 16, 21 | anbi12i 460 | . . . . 5 ⊢ ((𝑥 ∈ (2nd ‘⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st ‘⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩)) ↔ (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) |
23 | 22 | rexbii 2494 | . . . 4 ⊢ (∃𝑥 ∈ Q (𝑥 ∈ (2nd ‘⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st ‘⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩)) ↔ ∃𝑥 ∈ Q (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) |
24 | 10, 23 | bitrdi 196 | . . 3 ⊢ (𝐴 <Q 𝐵 → (⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩<P ⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩ ↔ ∃𝑥 ∈ Q (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵))) |
25 | ltbtwnnqq 7427 | . . 3 ⊢ (𝐴 <Q 𝐵 ↔ ∃𝑥 ∈ Q (𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) | |
26 | 24, 25 | bitr4di 198 | . 2 ⊢ (𝐴 <Q 𝐵 → (⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩<P ⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩ ↔ 𝐴 <Q 𝐵)) |
27 | 26 | ibir 177 | 1 ⊢ (𝐴 <Q 𝐵 → ⟨{𝑙 ∣ 𝑙 <Q 𝐴}, {𝑢 ∣ 𝐴 <Q 𝑢}⟩<P ⟨{𝑙 ∣ 𝑙 <Q 𝐵}, {𝑢 ∣ 𝐵 <Q 𝑢}⟩) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2158 {cab 2173 ∃wrex 2466 ⟨cop 3607 class class class wbr 4015 ‘cfv 5228 1st c1st 6152 2nd c2nd 6153 Qcnq 7292 <Q cltq 7297 Pcnp 7303 <P cltp 7307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-eprel 4301 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6154 df-2nd 6155 df-recs 6319 df-irdg 6384 df-1o 6430 df-oadd 6434 df-omul 6435 df-er 6548 df-ec 6550 df-qs 6554 df-ni 7316 df-pli 7317 df-mi 7318 df-lti 7319 df-plpq 7356 df-mpq 7357 df-enq 7359 df-nqqs 7360 df-plqqs 7361 df-mqqs 7362 df-1nqqs 7363 df-rq 7364 df-ltnqqs 7365 df-inp 7478 df-iltp 7482 |
This theorem is referenced by: caucvgprprlemk 7695 caucvgprprlemloccalc 7696 caucvgprprlemnjltk 7703 caucvgprprlemlol 7710 caucvgprprlemupu 7712 suplocexprlemloc 7733 |
Copyright terms: Public domain | W3C validator |