ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltnqpri GIF version

Theorem ltnqpri 7556
Description: We can order fractions via <Q or <P. (Contributed by Jim Kingdon, 8-Jan-2021.)
Assertion
Ref Expression
ltnqpri (𝐴 <Q 𝐵 → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)
Distinct variable groups:   𝐴,𝑙   𝑢,𝐴   𝐵,𝑙   𝑢,𝐵

Proof of Theorem ltnqpri
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7327 . . . . . . . 8 <Q ⊆ (Q × Q)
21brel 4663 . . . . . . 7 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
32simpld 111 . . . . . 6 (𝐴 <Q 𝐵𝐴Q)
4 nqprlu 7509 . . . . . 6 (𝐴Q → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
53, 4syl 14 . . . . 5 (𝐴 <Q 𝐵 → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
62simprd 113 . . . . . 6 (𝐴 <Q 𝐵𝐵Q)
7 nqprlu 7509 . . . . . 6 (𝐵Q → ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P)
86, 7syl 14 . . . . 5 (𝐴 <Q 𝐵 → ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P)
9 ltdfpr 7468 . . . . 5 ((⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P ∧ ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P) → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))))
105, 8, 9syl2anc 409 . . . 4 (𝐴 <Q 𝐵 → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))))
11 vex 2733 . . . . . . 7 𝑥 ∈ V
12 breq2 3993 . . . . . . 7 (𝑢 = 𝑥 → (𝐴 <Q 𝑢𝐴 <Q 𝑥))
13 ltnqex 7511 . . . . . . . 8 {𝑙𝑙 <Q 𝐴} ∈ V
14 gtnqex 7512 . . . . . . . 8 {𝑢𝐴 <Q 𝑢} ∈ V
1513, 14op2nd 6126 . . . . . . 7 (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) = {𝑢𝐴 <Q 𝑢}
1611, 12, 15elab2 2878 . . . . . 6 (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ↔ 𝐴 <Q 𝑥)
17 breq1 3992 . . . . . . 7 (𝑙 = 𝑥 → (𝑙 <Q 𝐵𝑥 <Q 𝐵))
18 ltnqex 7511 . . . . . . . 8 {𝑙𝑙 <Q 𝐵} ∈ V
19 gtnqex 7512 . . . . . . . 8 {𝑢𝐵 <Q 𝑢} ∈ V
2018, 19op1st 6125 . . . . . . 7 (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) = {𝑙𝑙 <Q 𝐵}
2111, 17, 20elab2 2878 . . . . . 6 (𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) ↔ 𝑥 <Q 𝐵)
2216, 21anbi12i 457 . . . . 5 ((𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ↔ (𝐴 <Q 𝑥𝑥 <Q 𝐵))
2322rexbii 2477 . . . 4 (∃𝑥Q (𝑥 ∈ (2nd ‘⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩) ∧ 𝑥 ∈ (1st ‘⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ↔ ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
2410, 23bitrdi 195 . . 3 (𝐴 <Q 𝐵 → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ↔ ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵)))
25 ltbtwnnqq 7377 . . 3 (𝐴 <Q 𝐵 ↔ ∃𝑥Q (𝐴 <Q 𝑥𝑥 <Q 𝐵))
2624, 25bitr4di 197 . 2 (𝐴 <Q 𝐵 → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ↔ 𝐴 <Q 𝐵))
2726ibir 176 1 (𝐴 <Q 𝐵 → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 2141  {cab 2156  wrex 2449  cop 3586   class class class wbr 3989  cfv 5198  1st c1st 6117  2nd c2nd 6118  Qcnq 7242   <Q cltq 7247  Pcnp 7253  <P cltp 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-inp 7428  df-iltp 7432
This theorem is referenced by:  caucvgprprlemk  7645  caucvgprprlemloccalc  7646  caucvgprprlemnjltk  7653  caucvgprprlemlol  7660  caucvgprprlemupu  7662  suplocexprlemloc  7683
  Copyright terms: Public domain W3C validator