ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcn2 GIF version

Theorem bcn2 10677
Description: Binomial coefficient: 𝑁 choose 2. (Contributed by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bcn2 (𝑁 ∈ ℕ0 → (𝑁C2) = ((𝑁 · (𝑁 − 1)) / 2))

Proof of Theorem bcn2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2nn 9018 . . 3 2 ∈ ℕ
2 bcval5 10676 . . 3 ((𝑁 ∈ ℕ0 ∧ 2 ∈ ℕ) → (𝑁C2) = ((seq((𝑁 − 2) + 1)( · , I )‘𝑁) / (!‘2)))
31, 2mpan2 422 . 2 (𝑁 ∈ ℕ0 → (𝑁C2) = ((seq((𝑁 − 2) + 1)( · , I )‘𝑁) / (!‘2)))
4 2m1e1 8975 . . . . . . . 8 (2 − 1) = 1
54oveq2i 5853 . . . . . . 7 ((𝑁 − 2) + (2 − 1)) = ((𝑁 − 2) + 1)
6 nn0cn 9124 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
7 2cn 8928 . . . . . . . . 9 2 ∈ ℂ
8 ax-1cn 7846 . . . . . . . . 9 1 ∈ ℂ
9 npncan 8119 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 2) + (2 − 1)) = (𝑁 − 1))
107, 8, 9mp3an23 1319 . . . . . . . 8 (𝑁 ∈ ℂ → ((𝑁 − 2) + (2 − 1)) = (𝑁 − 1))
116, 10syl 14 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑁 − 2) + (2 − 1)) = (𝑁 − 1))
125, 11eqtr3id 2213 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 − 2) + 1) = (𝑁 − 1))
1312seqeq1d 10386 . . . . 5 (𝑁 ∈ ℕ0 → seq((𝑁 − 2) + 1)( · , I ) = seq(𝑁 − 1)( · , I ))
1413fveq1d 5488 . . . 4 (𝑁 ∈ ℕ0 → (seq((𝑁 − 2) + 1)( · , I )‘𝑁) = (seq(𝑁 − 1)( · , I )‘𝑁))
15 nn0z 9211 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
16 peano2zm 9229 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
1715, 16syl 14 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ)
18 uzid 9480 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
1915, 18syl 14 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ𝑁))
20 npcan 8107 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
216, 8, 20sylancl 410 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((𝑁 − 1) + 1) = 𝑁)
2221fveq2d 5490 . . . . . . . 8 (𝑁 ∈ ℕ0 → (ℤ‘((𝑁 − 1) + 1)) = (ℤ𝑁))
2319, 22eleqtrrd 2246 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘((𝑁 − 1) + 1)))
24 eluzelcn 9477 . . . . . . . . 9 (𝑥 ∈ (ℤ‘(𝑁 − 1)) → 𝑥 ∈ ℂ)
2524adantl 275 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑥 ∈ (ℤ‘(𝑁 − 1))) → 𝑥 ∈ ℂ)
26 fvi 5543 . . . . . . . . . 10 (𝑥 ∈ ℂ → ( I ‘𝑥) = 𝑥)
2726eleq1d 2235 . . . . . . . . 9 (𝑥 ∈ ℂ → (( I ‘𝑥) ∈ ℂ ↔ 𝑥 ∈ ℂ))
2827ibir 176 . . . . . . . 8 (𝑥 ∈ ℂ → ( I ‘𝑥) ∈ ℂ)
2925, 28syl 14 . . . . . . 7 ((𝑁 ∈ ℕ0𝑥 ∈ (ℤ‘(𝑁 − 1))) → ( I ‘𝑥) ∈ ℂ)
30 mulcl 7880 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
3130adantl 275 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
3217, 23, 29, 31seq3m1 10403 . . . . . 6 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I )‘𝑁) = ((seq(𝑁 − 1)( · , I )‘(𝑁 − 1)) · ( I ‘𝑁)))
3317, 29, 31seq3-1 10395 . . . . . . . 8 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I )‘(𝑁 − 1)) = ( I ‘(𝑁 − 1)))
34 fvi 5543 . . . . . . . . 9 ((𝑁 − 1) ∈ ℤ → ( I ‘(𝑁 − 1)) = (𝑁 − 1))
3517, 34syl 14 . . . . . . . 8 (𝑁 ∈ ℕ0 → ( I ‘(𝑁 − 1)) = (𝑁 − 1))
3633, 35eqtrd 2198 . . . . . . 7 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I )‘(𝑁 − 1)) = (𝑁 − 1))
37 fvi 5543 . . . . . . 7 (𝑁 ∈ ℕ0 → ( I ‘𝑁) = 𝑁)
3836, 37oveq12d 5860 . . . . . 6 (𝑁 ∈ ℕ0 → ((seq(𝑁 − 1)( · , I )‘(𝑁 − 1)) · ( I ‘𝑁)) = ((𝑁 − 1) · 𝑁))
3932, 38eqtrd 2198 . . . . 5 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I )‘𝑁) = ((𝑁 − 1) · 𝑁))
40 subcl 8097 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 − 1) ∈ ℂ)
416, 8, 40sylancl 410 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℂ)
4241, 6mulcomd 7920 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 − 1) · 𝑁) = (𝑁 · (𝑁 − 1)))
4339, 42eqtrd 2198 . . . 4 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I )‘𝑁) = (𝑁 · (𝑁 − 1)))
4414, 43eqtrd 2198 . . 3 (𝑁 ∈ ℕ0 → (seq((𝑁 − 2) + 1)( · , I )‘𝑁) = (𝑁 · (𝑁 − 1)))
45 fac2 10644 . . . 4 (!‘2) = 2
4645a1i 9 . . 3 (𝑁 ∈ ℕ0 → (!‘2) = 2)
4744, 46oveq12d 5860 . 2 (𝑁 ∈ ℕ0 → ((seq((𝑁 − 2) + 1)( · , I )‘𝑁) / (!‘2)) = ((𝑁 · (𝑁 − 1)) / 2))
483, 47eqtrd 2198 1 (𝑁 ∈ ℕ0 → (𝑁C2) = ((𝑁 · (𝑁 − 1)) / 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136   I cid 4266  cfv 5188  (class class class)co 5842  cc 7751  1c1 7754   + caddc 7756   · cmul 7758  cmin 8069   / cdiv 8568  cn 8857  2c2 8908  0cn0 9114  cz 9191  cuz 9466  seqcseq 10380  !cfa 10638  Ccbc 10660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-fz 9945  df-seqfrec 10381  df-fac 10639  df-bc 10661
This theorem is referenced by:  bcp1m1  10678
  Copyright terms: Public domain W3C validator