ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcn2 GIF version

Theorem bcn2 10522
Description: Binomial coefficient: 𝑁 choose 2. (Contributed by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bcn2 (𝑁 ∈ ℕ0 → (𝑁C2) = ((𝑁 · (𝑁 − 1)) / 2))

Proof of Theorem bcn2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2nn 8893 . . 3 2 ∈ ℕ
2 bcval5 10521 . . 3 ((𝑁 ∈ ℕ0 ∧ 2 ∈ ℕ) → (𝑁C2) = ((seq((𝑁 − 2) + 1)( · , I )‘𝑁) / (!‘2)))
31, 2mpan2 421 . 2 (𝑁 ∈ ℕ0 → (𝑁C2) = ((seq((𝑁 − 2) + 1)( · , I )‘𝑁) / (!‘2)))
4 2m1e1 8850 . . . . . . . 8 (2 − 1) = 1
54oveq2i 5785 . . . . . . 7 ((𝑁 − 2) + (2 − 1)) = ((𝑁 − 2) + 1)
6 nn0cn 8999 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
7 2cn 8803 . . . . . . . . 9 2 ∈ ℂ
8 ax-1cn 7725 . . . . . . . . 9 1 ∈ ℂ
9 npncan 7995 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 2) + (2 − 1)) = (𝑁 − 1))
107, 8, 9mp3an23 1307 . . . . . . . 8 (𝑁 ∈ ℂ → ((𝑁 − 2) + (2 − 1)) = (𝑁 − 1))
116, 10syl 14 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑁 − 2) + (2 − 1)) = (𝑁 − 1))
125, 11syl5eqr 2186 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 − 2) + 1) = (𝑁 − 1))
1312seqeq1d 10236 . . . . 5 (𝑁 ∈ ℕ0 → seq((𝑁 − 2) + 1)( · , I ) = seq(𝑁 − 1)( · , I ))
1413fveq1d 5423 . . . 4 (𝑁 ∈ ℕ0 → (seq((𝑁 − 2) + 1)( · , I )‘𝑁) = (seq(𝑁 − 1)( · , I )‘𝑁))
15 nn0z 9086 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
16 peano2zm 9104 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
1715, 16syl 14 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℤ)
18 uzid 9352 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
1915, 18syl 14 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ𝑁))
20 npcan 7983 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
216, 8, 20sylancl 409 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((𝑁 − 1) + 1) = 𝑁)
2221fveq2d 5425 . . . . . . . 8 (𝑁 ∈ ℕ0 → (ℤ‘((𝑁 − 1) + 1)) = (ℤ𝑁))
2319, 22eleqtrrd 2219 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘((𝑁 − 1) + 1)))
24 eluzelcn 9349 . . . . . . . . 9 (𝑥 ∈ (ℤ‘(𝑁 − 1)) → 𝑥 ∈ ℂ)
2524adantl 275 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑥 ∈ (ℤ‘(𝑁 − 1))) → 𝑥 ∈ ℂ)
26 fvi 5478 . . . . . . . . . 10 (𝑥 ∈ ℂ → ( I ‘𝑥) = 𝑥)
2726eleq1d 2208 . . . . . . . . 9 (𝑥 ∈ ℂ → (( I ‘𝑥) ∈ ℂ ↔ 𝑥 ∈ ℂ))
2827ibir 176 . . . . . . . 8 (𝑥 ∈ ℂ → ( I ‘𝑥) ∈ ℂ)
2925, 28syl 14 . . . . . . 7 ((𝑁 ∈ ℕ0𝑥 ∈ (ℤ‘(𝑁 − 1))) → ( I ‘𝑥) ∈ ℂ)
30 mulcl 7759 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
3130adantl 275 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
3217, 23, 29, 31seq3m1 10253 . . . . . 6 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I )‘𝑁) = ((seq(𝑁 − 1)( · , I )‘(𝑁 − 1)) · ( I ‘𝑁)))
3317, 29, 31seq3-1 10245 . . . . . . . 8 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I )‘(𝑁 − 1)) = ( I ‘(𝑁 − 1)))
34 fvi 5478 . . . . . . . . 9 ((𝑁 − 1) ∈ ℤ → ( I ‘(𝑁 − 1)) = (𝑁 − 1))
3517, 34syl 14 . . . . . . . 8 (𝑁 ∈ ℕ0 → ( I ‘(𝑁 − 1)) = (𝑁 − 1))
3633, 35eqtrd 2172 . . . . . . 7 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I )‘(𝑁 − 1)) = (𝑁 − 1))
37 fvi 5478 . . . . . . 7 (𝑁 ∈ ℕ0 → ( I ‘𝑁) = 𝑁)
3836, 37oveq12d 5792 . . . . . 6 (𝑁 ∈ ℕ0 → ((seq(𝑁 − 1)( · , I )‘(𝑁 − 1)) · ( I ‘𝑁)) = ((𝑁 − 1) · 𝑁))
3932, 38eqtrd 2172 . . . . 5 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I )‘𝑁) = ((𝑁 − 1) · 𝑁))
40 subcl 7973 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 − 1) ∈ ℂ)
416, 8, 40sylancl 409 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℂ)
4241, 6mulcomd 7799 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 − 1) · 𝑁) = (𝑁 · (𝑁 − 1)))
4339, 42eqtrd 2172 . . . 4 (𝑁 ∈ ℕ0 → (seq(𝑁 − 1)( · , I )‘𝑁) = (𝑁 · (𝑁 − 1)))
4414, 43eqtrd 2172 . . 3 (𝑁 ∈ ℕ0 → (seq((𝑁 − 2) + 1)( · , I )‘𝑁) = (𝑁 · (𝑁 − 1)))
45 fac2 10489 . . . 4 (!‘2) = 2
4645a1i 9 . . 3 (𝑁 ∈ ℕ0 → (!‘2) = 2)
4744, 46oveq12d 5792 . 2 (𝑁 ∈ ℕ0 → ((seq((𝑁 − 2) + 1)( · , I )‘𝑁) / (!‘2)) = ((𝑁 · (𝑁 − 1)) / 2))
483, 47eqtrd 2172 1 (𝑁 ∈ ℕ0 → (𝑁C2) = ((𝑁 · (𝑁 − 1)) / 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480   I cid 4210  cfv 5123  (class class class)co 5774  cc 7630  1c1 7633   + caddc 7635   · cmul 7637  cmin 7945   / cdiv 8444  cn 8732  2c2 8783  0cn0 8989  cz 9066  cuz 9338  seqcseq 10230  !cfa 10483  Ccbc 10505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-n0 8990  df-z 9067  df-uz 9339  df-q 9424  df-fz 9803  df-seqfrec 10231  df-fac 10484  df-bc 10506
This theorem is referenced by:  bcp1m1  10523
  Copyright terms: Public domain W3C validator