Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ov GIF version

Theorem ov 5902
 Description: The value of an operation class abstraction. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
ov.1 𝐶 ∈ V
ov.2 (𝑥 = 𝐴 → (𝜑𝜓))
ov.3 (𝑦 = 𝐵 → (𝜓𝜒))
ov.4 (𝑧 = 𝐶 → (𝜒𝜃))
ov.5 ((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑)
ov.6 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
Assertion
Ref Expression
ov ((𝐴𝑅𝐵𝑆) → ((𝐴𝐹𝐵) = 𝐶𝜃))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜃,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝜒(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem ov
StepHypRef Expression
1 df-ov 5789 . . . . 5 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 ov.6 . . . . . 6 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
32fveq1i 5434 . . . . 5 (𝐹‘⟨𝐴, 𝐵⟩) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩)
41, 3eqtri 2162 . . . 4 (𝐴𝐹𝐵) = ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩)
54eqeq1i 2149 . . 3 ((𝐴𝐹𝐵) = 𝐶 ↔ ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶)
6 ov.5 . . . . . 6 ((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑)
76fnoprab 5886 . . . . 5 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)}
8 eleq1 2204 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝑅𝐴𝑅))
98anbi1d 461 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥𝑅𝑦𝑆) ↔ (𝐴𝑅𝑦𝑆)))
10 eleq1 2204 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦𝑆𝐵𝑆))
1110anbi2d 460 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴𝑅𝑦𝑆) ↔ (𝐴𝑅𝐵𝑆)))
129, 11opelopabg 4201 . . . . . 6 ((𝐴𝑅𝐵𝑆) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)} ↔ (𝐴𝑅𝐵𝑆)))
1312ibir 176 . . . . 5 ((𝐴𝑅𝐵𝑆) → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)})
14 fnopfvb 5475 . . . . 5 (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} Fn {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)} ∧ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑆)}) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}))
157, 13, 14sylancr 411 . . . 4 ((𝐴𝑅𝐵𝑆) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}))
16 ov.1 . . . . 5 𝐶 ∈ V
17 ov.2 . . . . . . 7 (𝑥 = 𝐴 → (𝜑𝜓))
189, 17anbi12d 465 . . . . . 6 (𝑥 = 𝐴 → (((𝑥𝑅𝑦𝑆) ∧ 𝜑) ↔ ((𝐴𝑅𝑦𝑆) ∧ 𝜓)))
19 ov.3 . . . . . . 7 (𝑦 = 𝐵 → (𝜓𝜒))
2011, 19anbi12d 465 . . . . . 6 (𝑦 = 𝐵 → (((𝐴𝑅𝑦𝑆) ∧ 𝜓) ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜒)))
21 ov.4 . . . . . . 7 (𝑧 = 𝐶 → (𝜒𝜃))
2221anbi2d 460 . . . . . 6 (𝑧 = 𝐶 → (((𝐴𝑅𝐵𝑆) ∧ 𝜒) ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
2318, 20, 22eloprabg 5871 . . . . 5 ((𝐴𝑅𝐵𝑆𝐶 ∈ V) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
2416, 23mp3an3 1305 . . . 4 ((𝐴𝑅𝐵𝑆) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)} ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
2515, 24bitrd 187 . . 3 ((𝐴𝑅𝐵𝑆) → (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
265, 25syl5bb 191 . 2 ((𝐴𝑅𝐵𝑆) → ((𝐴𝐹𝐵) = 𝐶 ↔ ((𝐴𝑅𝐵𝑆) ∧ 𝜃)))
2726bianabs 601 1 ((𝐴𝑅𝐵𝑆) → ((𝐴𝐹𝐵) = 𝐶𝜃))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332  ∃!weu 1990   ∈ wcel 2112  Vcvv 2691  ⟨cop 3537  {copab 3998   Fn wfn 5130  ‘cfv 5135  (class class class)co 5786  {coprab 5787 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2115  ax-ext 2123  ax-sep 4056  ax-pow 4108  ax-pr 4142 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1732  df-eu 1993  df-mo 1994  df-clab 2128  df-cleq 2134  df-clel 2137  df-nfc 2272  df-ral 2423  df-rex 2424  df-v 2693  df-sbc 2916  df-un 3082  df-in 3084  df-ss 3091  df-pw 3519  df-sn 3540  df-pr 3541  df-op 3543  df-uni 3747  df-br 3940  df-opab 4000  df-id 4226  df-xp 4557  df-rel 4558  df-cnv 4559  df-co 4560  df-dm 4561  df-iota 5100  df-fun 5137  df-fn 5138  df-fv 5143  df-ov 5789  df-oprab 5790 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator