Proof of Theorem ov
| Step | Hyp | Ref
| Expression |
| 1 | | df-ov 5925 |
. . . . 5
⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) |
| 2 | | ov.6 |
. . . . . 6
⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} |
| 3 | 2 | fveq1i 5559 |
. . . . 5
⊢ (𝐹‘〈𝐴, 𝐵〉) = ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)}‘〈𝐴, 𝐵〉) |
| 4 | 1, 3 | eqtri 2217 |
. . . 4
⊢ (𝐴𝐹𝐵) = ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)}‘〈𝐴, 𝐵〉) |
| 5 | 4 | eqeq1i 2204 |
. . 3
⊢ ((𝐴𝐹𝐵) = 𝐶 ↔ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)}‘〈𝐴, 𝐵〉) = 𝐶) |
| 6 | | ov.5 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) → ∃!𝑧𝜑) |
| 7 | 6 | fnoprab 6025 |
. . . . 5
⊢
{〈〈𝑥,
𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} Fn {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)} |
| 8 | | eleq1 2259 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑅 ↔ 𝐴 ∈ 𝑅)) |
| 9 | 8 | anbi1d 465 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ↔ (𝐴 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆))) |
| 10 | | eleq1 2259 |
. . . . . . . 8
⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝑆 ↔ 𝐵 ∈ 𝑆)) |
| 11 | 10 | anbi2d 464 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → ((𝐴 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ↔ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆))) |
| 12 | 9, 11 | opelopabg 4302 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)} ↔ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆))) |
| 13 | 12 | ibir 177 |
. . . . 5
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)}) |
| 14 | | fnopfvb 5602 |
. . . . 5
⊢
(({〈〈𝑥,
𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} Fn {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)} ∧ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)}) → (({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)}‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)})) |
| 15 | 7, 13, 14 | sylancr 414 |
. . . 4
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)}‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)})) |
| 16 | | ov.1 |
. . . . 5
⊢ 𝐶 ∈ V |
| 17 | | ov.2 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| 18 | 9, 17 | anbi12d 473 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑) ↔ ((𝐴 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜓))) |
| 19 | | ov.3 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| 20 | 11, 19 | anbi12d 473 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (((𝐴 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜓) ↔ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ 𝜒))) |
| 21 | | ov.4 |
. . . . . . 7
⊢ (𝑧 = 𝐶 → (𝜒 ↔ 𝜃)) |
| 22 | 21 | anbi2d 464 |
. . . . . 6
⊢ (𝑧 = 𝐶 → (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ 𝜒) ↔ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ 𝜃))) |
| 23 | 18, 20, 22 | eloprabg 6010 |
. . . . 5
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ V) → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} ↔ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ 𝜃))) |
| 24 | 16, 23 | mp3an3 1337 |
. . . 4
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (〈〈𝐴, 𝐵〉, 𝐶〉 ∈ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)} ↔ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ 𝜃))) |
| 25 | 15, 24 | bitrd 188 |
. . 3
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆) ∧ 𝜑)}‘〈𝐴, 𝐵〉) = 𝐶 ↔ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ 𝜃))) |
| 26 | 5, 25 | bitrid 192 |
. 2
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵) = 𝐶 ↔ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) ∧ 𝜃))) |
| 27 | 26 | bianabs 611 |
1
⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵) = 𝐶 ↔ 𝜃)) |