| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fac0 | GIF version | ||
| Description: The factorial of 0. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| Ref | Expression |
|---|---|
| fac0 | ⊢ (!‘0) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 8136 | . 2 ⊢ 0 ∈ V | |
| 2 | 1ex 8137 | . 2 ⊢ 1 ∈ V | |
| 3 | df-fac 10943 | . . 3 ⊢ ! = ({〈0, 1〉} ∪ seq1( · , I )) | |
| 4 | nnuz 9754 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
| 5 | dfn2 9378 | . . . . . . 7 ⊢ ℕ = (ℕ0 ∖ {0}) | |
| 6 | 4, 5 | eqtr3i 2252 | . . . . . 6 ⊢ (ℤ≥‘1) = (ℕ0 ∖ {0}) |
| 7 | 6 | reseq2i 5001 | . . . . 5 ⊢ (seq1( · , I ) ↾ (ℤ≥‘1)) = (seq1( · , I ) ↾ (ℕ0 ∖ {0})) |
| 8 | eqid 2229 | . . . . . . . . 9 ⊢ (ℤ≥‘1) = (ℤ≥‘1) | |
| 9 | 1zzd 9469 | . . . . . . . . 9 ⊢ (⊤ → 1 ∈ ℤ) | |
| 10 | fvi 5690 | . . . . . . . . . . . . 13 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) = 𝑓) | |
| 11 | 10 | eleq1d 2298 | . . . . . . . . . . . 12 ⊢ (𝑓 ∈ (ℤ≥‘1) → (( I ‘𝑓) ∈ (ℤ≥‘1) ↔ 𝑓 ∈ (ℤ≥‘1))) |
| 12 | 11 | ibir 177 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ (ℤ≥‘1)) |
| 13 | eluzelcn 9729 | . . . . . . . . . . 11 ⊢ (( I ‘𝑓) ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ ℂ) | |
| 14 | 12, 13 | syl 14 | . . . . . . . . . 10 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ ℂ) |
| 15 | 14 | adantl 277 | . . . . . . . . 9 ⊢ ((⊤ ∧ 𝑓 ∈ (ℤ≥‘1)) → ( I ‘𝑓) ∈ ℂ) |
| 16 | mulcl 8122 | . . . . . . . . . 10 ⊢ ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ) → (𝑓 · 𝑔) ∈ ℂ) | |
| 17 | 16 | adantl 277 | . . . . . . . . 9 ⊢ ((⊤ ∧ (𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ)) → (𝑓 · 𝑔) ∈ ℂ) |
| 18 | 8, 9, 15, 17 | seqf 10681 | . . . . . . . 8 ⊢ (⊤ → seq1( · , I ):(ℤ≥‘1)⟶ℂ) |
| 19 | 18 | ffnd 5473 | . . . . . . 7 ⊢ (⊤ → seq1( · , I ) Fn (ℤ≥‘1)) |
| 20 | 19 | mptru 1404 | . . . . . 6 ⊢ seq1( · , I ) Fn (ℤ≥‘1) |
| 21 | fnresdm 5431 | . . . . . 6 ⊢ (seq1( · , I ) Fn (ℤ≥‘1) → (seq1( · , I ) ↾ (ℤ≥‘1)) = seq1( · , I )) | |
| 22 | 20, 21 | ax-mp 5 | . . . . 5 ⊢ (seq1( · , I ) ↾ (ℤ≥‘1)) = seq1( · , I ) |
| 23 | 7, 22 | eqtr3i 2252 | . . . 4 ⊢ (seq1( · , I ) ↾ (ℕ0 ∖ {0})) = seq1( · , I ) |
| 24 | 23 | uneq2i 3355 | . . 3 ⊢ ({〈0, 1〉} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) = ({〈0, 1〉} ∪ seq1( · , I )) |
| 25 | 3, 24 | eqtr4i 2253 | . 2 ⊢ ! = ({〈0, 1〉} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) |
| 26 | 1, 2, 25 | fvsnun1 5835 | 1 ⊢ (!‘0) = 1 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ⊤wtru 1396 ∈ wcel 2200 ∖ cdif 3194 ∪ cun 3195 {csn 3666 〈cop 3669 I cid 4378 ↾ cres 4720 Fn wfn 5312 ‘cfv 5317 (class class class)co 6000 ℂcc 7993 0cc0 7995 1c1 7996 · cmul 8000 ℕcn 9106 ℕ0cn0 9365 ℤ≥cuz 9718 seqcseq 10664 !cfa 10942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-seqfrec 10665 df-fac 10943 |
| This theorem is referenced by: facp1 10947 faccl 10952 facwordi 10957 faclbnd 10958 facubnd 10962 bcn0 10972 bcval5 10980 fprodfac 12121 ef0lem 12166 ege2le3 12177 eft0val 12199 prmfac1 12669 pcfac 12868 |
| Copyright terms: Public domain | W3C validator |