Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fac0 | GIF version |
Description: The factorial of 0. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
Ref | Expression |
---|---|
fac0 | ⊢ (!‘0) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 7893 | . 2 ⊢ 0 ∈ V | |
2 | 1ex 7894 | . 2 ⊢ 1 ∈ V | |
3 | df-fac 10639 | . . 3 ⊢ ! = ({〈0, 1〉} ∪ seq1( · , I )) | |
4 | nnuz 9501 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
5 | dfn2 9127 | . . . . . . 7 ⊢ ℕ = (ℕ0 ∖ {0}) | |
6 | 4, 5 | eqtr3i 2188 | . . . . . 6 ⊢ (ℤ≥‘1) = (ℕ0 ∖ {0}) |
7 | 6 | reseq2i 4881 | . . . . 5 ⊢ (seq1( · , I ) ↾ (ℤ≥‘1)) = (seq1( · , I ) ↾ (ℕ0 ∖ {0})) |
8 | eqid 2165 | . . . . . . . . 9 ⊢ (ℤ≥‘1) = (ℤ≥‘1) | |
9 | 1zzd 9218 | . . . . . . . . 9 ⊢ (⊤ → 1 ∈ ℤ) | |
10 | fvi 5543 | . . . . . . . . . . . . 13 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) = 𝑓) | |
11 | 10 | eleq1d 2235 | . . . . . . . . . . . 12 ⊢ (𝑓 ∈ (ℤ≥‘1) → (( I ‘𝑓) ∈ (ℤ≥‘1) ↔ 𝑓 ∈ (ℤ≥‘1))) |
12 | 11 | ibir 176 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ (ℤ≥‘1)) |
13 | eluzelcn 9477 | . . . . . . . . . . 11 ⊢ (( I ‘𝑓) ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ ℂ) | |
14 | 12, 13 | syl 14 | . . . . . . . . . 10 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ ℂ) |
15 | 14 | adantl 275 | . . . . . . . . 9 ⊢ ((⊤ ∧ 𝑓 ∈ (ℤ≥‘1)) → ( I ‘𝑓) ∈ ℂ) |
16 | mulcl 7880 | . . . . . . . . . 10 ⊢ ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ) → (𝑓 · 𝑔) ∈ ℂ) | |
17 | 16 | adantl 275 | . . . . . . . . 9 ⊢ ((⊤ ∧ (𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ)) → (𝑓 · 𝑔) ∈ ℂ) |
18 | 8, 9, 15, 17 | seqf 10396 | . . . . . . . 8 ⊢ (⊤ → seq1( · , I ):(ℤ≥‘1)⟶ℂ) |
19 | 18 | ffnd 5338 | . . . . . . 7 ⊢ (⊤ → seq1( · , I ) Fn (ℤ≥‘1)) |
20 | 19 | mptru 1352 | . . . . . 6 ⊢ seq1( · , I ) Fn (ℤ≥‘1) |
21 | fnresdm 5297 | . . . . . 6 ⊢ (seq1( · , I ) Fn (ℤ≥‘1) → (seq1( · , I ) ↾ (ℤ≥‘1)) = seq1( · , I )) | |
22 | 20, 21 | ax-mp 5 | . . . . 5 ⊢ (seq1( · , I ) ↾ (ℤ≥‘1)) = seq1( · , I ) |
23 | 7, 22 | eqtr3i 2188 | . . . 4 ⊢ (seq1( · , I ) ↾ (ℕ0 ∖ {0})) = seq1( · , I ) |
24 | 23 | uneq2i 3273 | . . 3 ⊢ ({〈0, 1〉} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) = ({〈0, 1〉} ∪ seq1( · , I )) |
25 | 3, 24 | eqtr4i 2189 | . 2 ⊢ ! = ({〈0, 1〉} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) |
26 | 1, 2, 25 | fvsnun1 5682 | 1 ⊢ (!‘0) = 1 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1343 ⊤wtru 1344 ∈ wcel 2136 ∖ cdif 3113 ∪ cun 3114 {csn 3576 〈cop 3579 I cid 4266 ↾ cres 4606 Fn wfn 5183 ‘cfv 5188 (class class class)co 5842 ℂcc 7751 0cc0 7753 1c1 7754 · cmul 7758 ℕcn 8857 ℕ0cn0 9114 ℤ≥cuz 9466 seqcseq 10380 !cfa 10638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-seqfrec 10381 df-fac 10639 |
This theorem is referenced by: facp1 10643 faccl 10648 facwordi 10653 faclbnd 10654 facubnd 10658 bcn0 10668 bcval5 10676 fprodfac 11556 ef0lem 11601 ege2le3 11612 eft0val 11634 prmfac1 12084 pcfac 12280 |
Copyright terms: Public domain | W3C validator |