Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fac0 | GIF version |
Description: The factorial of 0. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
Ref | Expression |
---|---|
fac0 | ⊢ (!‘0) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 7851 | . 2 ⊢ 0 ∈ V | |
2 | 1ex 7852 | . 2 ⊢ 1 ∈ V | |
3 | df-fac 10577 | . . 3 ⊢ ! = ({〈0, 1〉} ∪ seq1( · , I )) | |
4 | nnuz 9453 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
5 | dfn2 9082 | . . . . . . 7 ⊢ ℕ = (ℕ0 ∖ {0}) | |
6 | 4, 5 | eqtr3i 2177 | . . . . . 6 ⊢ (ℤ≥‘1) = (ℕ0 ∖ {0}) |
7 | 6 | reseq2i 4856 | . . . . 5 ⊢ (seq1( · , I ) ↾ (ℤ≥‘1)) = (seq1( · , I ) ↾ (ℕ0 ∖ {0})) |
8 | eqid 2154 | . . . . . . . . 9 ⊢ (ℤ≥‘1) = (ℤ≥‘1) | |
9 | 1zzd 9173 | . . . . . . . . 9 ⊢ (⊤ → 1 ∈ ℤ) | |
10 | fvi 5518 | . . . . . . . . . . . . 13 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) = 𝑓) | |
11 | 10 | eleq1d 2223 | . . . . . . . . . . . 12 ⊢ (𝑓 ∈ (ℤ≥‘1) → (( I ‘𝑓) ∈ (ℤ≥‘1) ↔ 𝑓 ∈ (ℤ≥‘1))) |
12 | 11 | ibir 176 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ (ℤ≥‘1)) |
13 | eluzelcn 9429 | . . . . . . . . . . 11 ⊢ (( I ‘𝑓) ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ ℂ) | |
14 | 12, 13 | syl 14 | . . . . . . . . . 10 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ ℂ) |
15 | 14 | adantl 275 | . . . . . . . . 9 ⊢ ((⊤ ∧ 𝑓 ∈ (ℤ≥‘1)) → ( I ‘𝑓) ∈ ℂ) |
16 | mulcl 7838 | . . . . . . . . . 10 ⊢ ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ) → (𝑓 · 𝑔) ∈ ℂ) | |
17 | 16 | adantl 275 | . . . . . . . . 9 ⊢ ((⊤ ∧ (𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ)) → (𝑓 · 𝑔) ∈ ℂ) |
18 | 8, 9, 15, 17 | seqf 10338 | . . . . . . . 8 ⊢ (⊤ → seq1( · , I ):(ℤ≥‘1)⟶ℂ) |
19 | 18 | ffnd 5313 | . . . . . . 7 ⊢ (⊤ → seq1( · , I ) Fn (ℤ≥‘1)) |
20 | 19 | mptru 1341 | . . . . . 6 ⊢ seq1( · , I ) Fn (ℤ≥‘1) |
21 | fnresdm 5272 | . . . . . 6 ⊢ (seq1( · , I ) Fn (ℤ≥‘1) → (seq1( · , I ) ↾ (ℤ≥‘1)) = seq1( · , I )) | |
22 | 20, 21 | ax-mp 5 | . . . . 5 ⊢ (seq1( · , I ) ↾ (ℤ≥‘1)) = seq1( · , I ) |
23 | 7, 22 | eqtr3i 2177 | . . . 4 ⊢ (seq1( · , I ) ↾ (ℕ0 ∖ {0})) = seq1( · , I ) |
24 | 23 | uneq2i 3254 | . . 3 ⊢ ({〈0, 1〉} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) = ({〈0, 1〉} ∪ seq1( · , I )) |
25 | 3, 24 | eqtr4i 2178 | . 2 ⊢ ! = ({〈0, 1〉} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) |
26 | 1, 2, 25 | fvsnun1 5657 | 1 ⊢ (!‘0) = 1 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1332 ⊤wtru 1333 ∈ wcel 2125 ∖ cdif 3095 ∪ cun 3096 {csn 3556 〈cop 3559 I cid 4243 ↾ cres 4581 Fn wfn 5158 ‘cfv 5163 (class class class)co 5814 ℂcc 7709 0cc0 7711 1c1 7712 · cmul 7716 ℕcn 8812 ℕ0cn0 9069 ℤ≥cuz 9418 seqcseq 10322 !cfa 10576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-addass 7813 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-0id 7819 ax-rnegex 7820 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-ltadd 7827 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-iord 4321 df-on 4323 df-ilim 4324 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-frec 6328 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-inn 8813 df-n0 9070 df-z 9147 df-uz 9419 df-seqfrec 10323 df-fac 10577 |
This theorem is referenced by: facp1 10581 faccl 10586 facwordi 10591 faclbnd 10592 facubnd 10596 bcn0 10606 bcval5 10614 fprodfac 11489 ef0lem 11534 ege2le3 11545 eft0val 11567 prmfac1 11998 |
Copyright terms: Public domain | W3C validator |