| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fac0 | GIF version | ||
| Description: The factorial of 0. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| Ref | Expression |
|---|---|
| fac0 | ⊢ (!‘0) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 8037 | . 2 ⊢ 0 ∈ V | |
| 2 | 1ex 8038 | . 2 ⊢ 1 ∈ V | |
| 3 | df-fac 10835 | . . 3 ⊢ ! = ({〈0, 1〉} ∪ seq1( · , I )) | |
| 4 | nnuz 9654 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
| 5 | dfn2 9279 | . . . . . . 7 ⊢ ℕ = (ℕ0 ∖ {0}) | |
| 6 | 4, 5 | eqtr3i 2219 | . . . . . 6 ⊢ (ℤ≥‘1) = (ℕ0 ∖ {0}) |
| 7 | 6 | reseq2i 4944 | . . . . 5 ⊢ (seq1( · , I ) ↾ (ℤ≥‘1)) = (seq1( · , I ) ↾ (ℕ0 ∖ {0})) |
| 8 | eqid 2196 | . . . . . . . . 9 ⊢ (ℤ≥‘1) = (ℤ≥‘1) | |
| 9 | 1zzd 9370 | . . . . . . . . 9 ⊢ (⊤ → 1 ∈ ℤ) | |
| 10 | fvi 5621 | . . . . . . . . . . . . 13 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) = 𝑓) | |
| 11 | 10 | eleq1d 2265 | . . . . . . . . . . . 12 ⊢ (𝑓 ∈ (ℤ≥‘1) → (( I ‘𝑓) ∈ (ℤ≥‘1) ↔ 𝑓 ∈ (ℤ≥‘1))) |
| 12 | 11 | ibir 177 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ (ℤ≥‘1)) |
| 13 | eluzelcn 9629 | . . . . . . . . . . 11 ⊢ (( I ‘𝑓) ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ ℂ) | |
| 14 | 12, 13 | syl 14 | . . . . . . . . . 10 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ ℂ) |
| 15 | 14 | adantl 277 | . . . . . . . . 9 ⊢ ((⊤ ∧ 𝑓 ∈ (ℤ≥‘1)) → ( I ‘𝑓) ∈ ℂ) |
| 16 | mulcl 8023 | . . . . . . . . . 10 ⊢ ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ) → (𝑓 · 𝑔) ∈ ℂ) | |
| 17 | 16 | adantl 277 | . . . . . . . . 9 ⊢ ((⊤ ∧ (𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ)) → (𝑓 · 𝑔) ∈ ℂ) |
| 18 | 8, 9, 15, 17 | seqf 10573 | . . . . . . . 8 ⊢ (⊤ → seq1( · , I ):(ℤ≥‘1)⟶ℂ) |
| 19 | 18 | ffnd 5411 | . . . . . . 7 ⊢ (⊤ → seq1( · , I ) Fn (ℤ≥‘1)) |
| 20 | 19 | mptru 1373 | . . . . . 6 ⊢ seq1( · , I ) Fn (ℤ≥‘1) |
| 21 | fnresdm 5370 | . . . . . 6 ⊢ (seq1( · , I ) Fn (ℤ≥‘1) → (seq1( · , I ) ↾ (ℤ≥‘1)) = seq1( · , I )) | |
| 22 | 20, 21 | ax-mp 5 | . . . . 5 ⊢ (seq1( · , I ) ↾ (ℤ≥‘1)) = seq1( · , I ) |
| 23 | 7, 22 | eqtr3i 2219 | . . . 4 ⊢ (seq1( · , I ) ↾ (ℕ0 ∖ {0})) = seq1( · , I ) |
| 24 | 23 | uneq2i 3315 | . . 3 ⊢ ({〈0, 1〉} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) = ({〈0, 1〉} ∪ seq1( · , I )) |
| 25 | 3, 24 | eqtr4i 2220 | . 2 ⊢ ! = ({〈0, 1〉} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) |
| 26 | 1, 2, 25 | fvsnun1 5762 | 1 ⊢ (!‘0) = 1 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ⊤wtru 1365 ∈ wcel 2167 ∖ cdif 3154 ∪ cun 3155 {csn 3623 〈cop 3626 I cid 4324 ↾ cres 4666 Fn wfn 5254 ‘cfv 5259 (class class class)co 5925 ℂcc 7894 0cc0 7896 1c1 7897 · cmul 7901 ℕcn 9007 ℕ0cn0 9266 ℤ≥cuz 9618 seqcseq 10556 !cfa 10834 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 df-seqfrec 10557 df-fac 10835 |
| This theorem is referenced by: facp1 10839 faccl 10844 facwordi 10849 faclbnd 10850 facubnd 10854 bcn0 10864 bcval5 10872 fprodfac 11797 ef0lem 11842 ege2le3 11853 eft0val 11875 prmfac1 12345 pcfac 12544 |
| Copyright terms: Public domain | W3C validator |