![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fac0 | GIF version |
Description: The factorial of 0. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
Ref | Expression |
---|---|
fac0 | ⊢ (!‘0) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 7536 | . 2 ⊢ 0 ∈ V | |
2 | 1ex 7537 | . 2 ⊢ 1 ∈ V | |
3 | df-fac 10188 | . . 3 ⊢ ! = ({〈0, 1〉} ∪ seq1( · , I , ℂ)) | |
4 | nnuz 9108 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
5 | dfn2 8740 | . . . . . . 7 ⊢ ℕ = (ℕ0 ∖ {0}) | |
6 | 4, 5 | eqtr3i 2111 | . . . . . 6 ⊢ (ℤ≥‘1) = (ℕ0 ∖ {0}) |
7 | 6 | reseq2i 4723 | . . . . 5 ⊢ (seq1( · , I , ℂ) ↾ (ℤ≥‘1)) = (seq1( · , I , ℂ) ↾ (ℕ0 ∖ {0})) |
8 | eqid 2089 | . . . . . . . . 9 ⊢ (ℤ≥‘1) = (ℤ≥‘1) | |
9 | 1zzd 8831 | . . . . . . . . 9 ⊢ (⊤ → 1 ∈ ℤ) | |
10 | fvi 5374 | . . . . . . . . . . . . 13 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) = 𝑓) | |
11 | 10 | eleq1d 2157 | . . . . . . . . . . . 12 ⊢ (𝑓 ∈ (ℤ≥‘1) → (( I ‘𝑓) ∈ (ℤ≥‘1) ↔ 𝑓 ∈ (ℤ≥‘1))) |
12 | 11 | ibir 176 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ (ℤ≥‘1)) |
13 | eluzelcn 9084 | . . . . . . . . . . 11 ⊢ (( I ‘𝑓) ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ ℂ) | |
14 | 12, 13 | syl 14 | . . . . . . . . . 10 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ ℂ) |
15 | 14 | adantl 272 | . . . . . . . . 9 ⊢ ((⊤ ∧ 𝑓 ∈ (ℤ≥‘1)) → ( I ‘𝑓) ∈ ℂ) |
16 | mulcl 7523 | . . . . . . . . . 10 ⊢ ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ) → (𝑓 · 𝑔) ∈ ℂ) | |
17 | 16 | adantl 272 | . . . . . . . . 9 ⊢ ((⊤ ∧ (𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ)) → (𝑓 · 𝑔) ∈ ℂ) |
18 | 8, 9, 15, 17 | iseqfcl 9932 | . . . . . . . 8 ⊢ (⊤ → seq1( · , I , ℂ):(ℤ≥‘1)⟶ℂ) |
19 | ffn 5174 | . . . . . . . 8 ⊢ (seq1( · , I , ℂ):(ℤ≥‘1)⟶ℂ → seq1( · , I , ℂ) Fn (ℤ≥‘1)) | |
20 | 18, 19 | syl 14 | . . . . . . 7 ⊢ (⊤ → seq1( · , I , ℂ) Fn (ℤ≥‘1)) |
21 | 20 | mptru 1299 | . . . . . 6 ⊢ seq1( · , I , ℂ) Fn (ℤ≥‘1) |
22 | fnresdm 5136 | . . . . . 6 ⊢ (seq1( · , I , ℂ) Fn (ℤ≥‘1) → (seq1( · , I , ℂ) ↾ (ℤ≥‘1)) = seq1( · , I , ℂ)) | |
23 | 21, 22 | ax-mp 7 | . . . . 5 ⊢ (seq1( · , I , ℂ) ↾ (ℤ≥‘1)) = seq1( · , I , ℂ) |
24 | 7, 23 | eqtr3i 2111 | . . . 4 ⊢ (seq1( · , I , ℂ) ↾ (ℕ0 ∖ {0})) = seq1( · , I , ℂ) |
25 | 24 | uneq2i 3152 | . . 3 ⊢ ({〈0, 1〉} ∪ (seq1( · , I , ℂ) ↾ (ℕ0 ∖ {0}))) = ({〈0, 1〉} ∪ seq1( · , I , ℂ)) |
26 | 3, 25 | eqtr4i 2112 | . 2 ⊢ ! = ({〈0, 1〉} ∪ (seq1( · , I , ℂ) ↾ (ℕ0 ∖ {0}))) |
27 | 1, 2, 26 | fvsnun1 5508 | 1 ⊢ (!‘0) = 1 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1290 ⊤wtru 1291 ∈ wcel 1439 ∖ cdif 2997 ∪ cun 2998 {csn 3450 〈cop 3453 I cid 4124 ↾ cres 4453 Fn wfn 5023 ⟶wf 5024 ‘cfv 5028 (class class class)co 5666 ℂcc 7402 0cc0 7404 1c1 7405 · cmul 7409 ℕcn 8476 ℕ0cn0 8727 ℤ≥cuz 9073 seqcseq4 9905 !cfa 10187 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-coll 3960 ax-sep 3963 ax-nul 3971 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-iinf 4416 ax-cnex 7490 ax-resscn 7491 ax-1cn 7492 ax-1re 7493 ax-icn 7494 ax-addcl 7495 ax-addrcl 7496 ax-mulcl 7497 ax-addcom 7499 ax-addass 7501 ax-distr 7503 ax-i2m1 7504 ax-0lt1 7505 ax-0id 7507 ax-rnegex 7508 ax-cnre 7510 ax-pre-ltirr 7511 ax-pre-ltwlin 7512 ax-pre-lttrn 7513 ax-pre-ltadd 7515 |
This theorem depends on definitions: df-bi 116 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-reu 2367 df-rab 2369 df-v 2622 df-sbc 2842 df-csb 2935 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-nul 3288 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-int 3695 df-iun 3738 df-br 3852 df-opab 3906 df-mpt 3907 df-tr 3943 df-id 4129 df-iord 4202 df-on 4204 df-ilim 4205 df-suc 4207 df-iom 4419 df-xp 4457 df-rel 4458 df-cnv 4459 df-co 4460 df-dm 4461 df-rn 4462 df-res 4463 df-ima 4464 df-iota 4993 df-fun 5030 df-fn 5031 df-f 5032 df-f1 5033 df-fo 5034 df-f1o 5035 df-fv 5036 df-riota 5622 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-1st 5925 df-2nd 5926 df-recs 6084 df-frec 6170 df-pnf 7578 df-mnf 7579 df-xr 7580 df-ltxr 7581 df-le 7582 df-sub 7709 df-neg 7710 df-inn 8477 df-n0 8728 df-z 8805 df-uz 9074 df-iseq 9907 df-fac 10188 |
This theorem is referenced by: facp1 10192 faccl 10197 facwordi 10202 faclbnd 10203 facubnd 10207 bcn0 10217 ibcval5 10225 ef0lem 11004 ege2le3 11015 eft0val 11037 prmfac1 11463 |
Copyright terms: Public domain | W3C validator |