ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facnn GIF version

Theorem facnn 10853
Description: Value of the factorial function for positive integers. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
facnn (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))

Proof of Theorem facnn
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 c0ex 8048 . . 3 0 ∈ V
2 1ex 8049 . . 3 1 ∈ V
3 df-fac 10852 . . . 4 ! = ({⟨0, 1⟩} ∪ seq1( · , I ))
4 nnuz 9666 . . . . . . . 8 ℕ = (ℤ‘1)
5 dfn2 9290 . . . . . . . 8 ℕ = (ℕ0 ∖ {0})
64, 5eqtr3i 2227 . . . . . . 7 (ℤ‘1) = (ℕ0 ∖ {0})
76reseq2i 4953 . . . . . 6 (seq1( · , I ) ↾ (ℤ‘1)) = (seq1( · , I ) ↾ (ℕ0 ∖ {0}))
8 eqid 2204 . . . . . . . . . 10 (ℤ‘1) = (ℤ‘1)
9 1zzd 9381 . . . . . . . . . 10 (⊤ → 1 ∈ ℤ)
10 fvi 5630 . . . . . . . . . . . . . 14 (𝑓 ∈ (ℤ‘1) → ( I ‘𝑓) = 𝑓)
1110eleq1d 2273 . . . . . . . . . . . . 13 (𝑓 ∈ (ℤ‘1) → (( I ‘𝑓) ∈ (ℤ‘1) ↔ 𝑓 ∈ (ℤ‘1)))
1211ibir 177 . . . . . . . . . . . 12 (𝑓 ∈ (ℤ‘1) → ( I ‘𝑓) ∈ (ℤ‘1))
13 eluzelcn 9641 . . . . . . . . . . . 12 (( I ‘𝑓) ∈ (ℤ‘1) → ( I ‘𝑓) ∈ ℂ)
1412, 13syl 14 . . . . . . . . . . 11 (𝑓 ∈ (ℤ‘1) → ( I ‘𝑓) ∈ ℂ)
1514adantl 277 . . . . . . . . . 10 ((⊤ ∧ 𝑓 ∈ (ℤ‘1)) → ( I ‘𝑓) ∈ ℂ)
16 mulcl 8034 . . . . . . . . . . 11 ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ) → (𝑓 · 𝑔) ∈ ℂ)
1716adantl 277 . . . . . . . . . 10 ((⊤ ∧ (𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ)) → (𝑓 · 𝑔) ∈ ℂ)
188, 9, 15, 17seqf 10590 . . . . . . . . 9 (⊤ → seq1( · , I ):(ℤ‘1)⟶ℂ)
1918ffnd 5420 . . . . . . . 8 (⊤ → seq1( · , I ) Fn (ℤ‘1))
2019mptru 1381 . . . . . . 7 seq1( · , I ) Fn (ℤ‘1)
21 fnresdm 5379 . . . . . . 7 (seq1( · , I ) Fn (ℤ‘1) → (seq1( · , I ) ↾ (ℤ‘1)) = seq1( · , I ))
2220, 21ax-mp 5 . . . . . 6 (seq1( · , I ) ↾ (ℤ‘1)) = seq1( · , I )
237, 22eqtr3i 2227 . . . . 5 (seq1( · , I ) ↾ (ℕ0 ∖ {0})) = seq1( · , I )
2423uneq2i 3323 . . . 4 ({⟨0, 1⟩} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) = ({⟨0, 1⟩} ∪ seq1( · , I ))
253, 24eqtr4i 2228 . . 3 ! = ({⟨0, 1⟩} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0})))
261, 2, 25fvsnun2 5772 . 2 (𝑁 ∈ (ℕ0 ∖ {0}) → (!‘𝑁) = (seq1( · , I )‘𝑁))
2726, 5eleq2s 2299 1 (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wtru 1373  wcel 2175  cdif 3162  cun 3163  {csn 3632  cop 3635   I cid 4333  cres 4675   Fn wfn 5263  cfv 5268  (class class class)co 5934  cc 7905  0cc0 7907  1c1 7908   · cmul 7912  cn 9018  0cn0 9277  cuz 9630  seqcseq 10573  !cfa 10851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-inn 9019  df-n0 9278  df-z 9355  df-uz 9631  df-seqfrec 10574  df-fac 10852
This theorem is referenced by:  fac1  10855  facp1  10856  bcval5  10889
  Copyright terms: Public domain W3C validator