| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > facnn | GIF version | ||
| Description: Value of the factorial function for positive integers. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| Ref | Expression |
|---|---|
| facnn | ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 8086 | . . 3 ⊢ 0 ∈ V | |
| 2 | 1ex 8087 | . . 3 ⊢ 1 ∈ V | |
| 3 | df-fac 10893 | . . . 4 ⊢ ! = ({〈0, 1〉} ∪ seq1( · , I )) | |
| 4 | nnuz 9704 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
| 5 | dfn2 9328 | . . . . . . . 8 ⊢ ℕ = (ℕ0 ∖ {0}) | |
| 6 | 4, 5 | eqtr3i 2229 | . . . . . . 7 ⊢ (ℤ≥‘1) = (ℕ0 ∖ {0}) |
| 7 | 6 | reseq2i 4965 | . . . . . 6 ⊢ (seq1( · , I ) ↾ (ℤ≥‘1)) = (seq1( · , I ) ↾ (ℕ0 ∖ {0})) |
| 8 | eqid 2206 | . . . . . . . . . 10 ⊢ (ℤ≥‘1) = (ℤ≥‘1) | |
| 9 | 1zzd 9419 | . . . . . . . . . 10 ⊢ (⊤ → 1 ∈ ℤ) | |
| 10 | fvi 5649 | . . . . . . . . . . . . . 14 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) = 𝑓) | |
| 11 | 10 | eleq1d 2275 | . . . . . . . . . . . . 13 ⊢ (𝑓 ∈ (ℤ≥‘1) → (( I ‘𝑓) ∈ (ℤ≥‘1) ↔ 𝑓 ∈ (ℤ≥‘1))) |
| 12 | 11 | ibir 177 | . . . . . . . . . . . 12 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ (ℤ≥‘1)) |
| 13 | eluzelcn 9679 | . . . . . . . . . . . 12 ⊢ (( I ‘𝑓) ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ ℂ) | |
| 14 | 12, 13 | syl 14 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ ℂ) |
| 15 | 14 | adantl 277 | . . . . . . . . . 10 ⊢ ((⊤ ∧ 𝑓 ∈ (ℤ≥‘1)) → ( I ‘𝑓) ∈ ℂ) |
| 16 | mulcl 8072 | . . . . . . . . . . 11 ⊢ ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ) → (𝑓 · 𝑔) ∈ ℂ) | |
| 17 | 16 | adantl 277 | . . . . . . . . . 10 ⊢ ((⊤ ∧ (𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ)) → (𝑓 · 𝑔) ∈ ℂ) |
| 18 | 8, 9, 15, 17 | seqf 10631 | . . . . . . . . 9 ⊢ (⊤ → seq1( · , I ):(ℤ≥‘1)⟶ℂ) |
| 19 | 18 | ffnd 5436 | . . . . . . . 8 ⊢ (⊤ → seq1( · , I ) Fn (ℤ≥‘1)) |
| 20 | 19 | mptru 1382 | . . . . . . 7 ⊢ seq1( · , I ) Fn (ℤ≥‘1) |
| 21 | fnresdm 5394 | . . . . . . 7 ⊢ (seq1( · , I ) Fn (ℤ≥‘1) → (seq1( · , I ) ↾ (ℤ≥‘1)) = seq1( · , I )) | |
| 22 | 20, 21 | ax-mp 5 | . . . . . 6 ⊢ (seq1( · , I ) ↾ (ℤ≥‘1)) = seq1( · , I ) |
| 23 | 7, 22 | eqtr3i 2229 | . . . . 5 ⊢ (seq1( · , I ) ↾ (ℕ0 ∖ {0})) = seq1( · , I ) |
| 24 | 23 | uneq2i 3328 | . . . 4 ⊢ ({〈0, 1〉} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) = ({〈0, 1〉} ∪ seq1( · , I )) |
| 25 | 3, 24 | eqtr4i 2230 | . . 3 ⊢ ! = ({〈0, 1〉} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) |
| 26 | 1, 2, 25 | fvsnun2 5795 | . 2 ⊢ (𝑁 ∈ (ℕ0 ∖ {0}) → (!‘𝑁) = (seq1( · , I )‘𝑁)) |
| 27 | 26, 5 | eleq2s 2301 | 1 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ⊤wtru 1374 ∈ wcel 2177 ∖ cdif 3167 ∪ cun 3168 {csn 3638 〈cop 3641 I cid 4343 ↾ cres 4685 Fn wfn 5275 ‘cfv 5280 (class class class)co 5957 ℂcc 7943 0cc0 7945 1c1 7946 · cmul 7950 ℕcn 9056 ℕ0cn0 9315 ℤ≥cuz 9668 seqcseq 10614 !cfa 10892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-n0 9316 df-z 9393 df-uz 9669 df-seqfrec 10615 df-fac 10893 |
| This theorem is referenced by: fac1 10896 facp1 10897 bcval5 10930 |
| Copyright terms: Public domain | W3C validator |