Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > facnn | GIF version |
Description: Value of the factorial function for positive integers. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
Ref | Expression |
---|---|
facnn | ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 7914 | . . 3 ⊢ 0 ∈ V | |
2 | 1ex 7915 | . . 3 ⊢ 1 ∈ V | |
3 | df-fac 10660 | . . . 4 ⊢ ! = ({〈0, 1〉} ∪ seq1( · , I )) | |
4 | nnuz 9522 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
5 | dfn2 9148 | . . . . . . . 8 ⊢ ℕ = (ℕ0 ∖ {0}) | |
6 | 4, 5 | eqtr3i 2193 | . . . . . . 7 ⊢ (ℤ≥‘1) = (ℕ0 ∖ {0}) |
7 | 6 | reseq2i 4888 | . . . . . 6 ⊢ (seq1( · , I ) ↾ (ℤ≥‘1)) = (seq1( · , I ) ↾ (ℕ0 ∖ {0})) |
8 | eqid 2170 | . . . . . . . . . 10 ⊢ (ℤ≥‘1) = (ℤ≥‘1) | |
9 | 1zzd 9239 | . . . . . . . . . 10 ⊢ (⊤ → 1 ∈ ℤ) | |
10 | fvi 5553 | . . . . . . . . . . . . . 14 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) = 𝑓) | |
11 | 10 | eleq1d 2239 | . . . . . . . . . . . . 13 ⊢ (𝑓 ∈ (ℤ≥‘1) → (( I ‘𝑓) ∈ (ℤ≥‘1) ↔ 𝑓 ∈ (ℤ≥‘1))) |
12 | 11 | ibir 176 | . . . . . . . . . . . 12 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ (ℤ≥‘1)) |
13 | eluzelcn 9498 | . . . . . . . . . . . 12 ⊢ (( I ‘𝑓) ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ ℂ) | |
14 | 12, 13 | syl 14 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ ℂ) |
15 | 14 | adantl 275 | . . . . . . . . . 10 ⊢ ((⊤ ∧ 𝑓 ∈ (ℤ≥‘1)) → ( I ‘𝑓) ∈ ℂ) |
16 | mulcl 7901 | . . . . . . . . . . 11 ⊢ ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ) → (𝑓 · 𝑔) ∈ ℂ) | |
17 | 16 | adantl 275 | . . . . . . . . . 10 ⊢ ((⊤ ∧ (𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ)) → (𝑓 · 𝑔) ∈ ℂ) |
18 | 8, 9, 15, 17 | seqf 10417 | . . . . . . . . 9 ⊢ (⊤ → seq1( · , I ):(ℤ≥‘1)⟶ℂ) |
19 | 18 | ffnd 5348 | . . . . . . . 8 ⊢ (⊤ → seq1( · , I ) Fn (ℤ≥‘1)) |
20 | 19 | mptru 1357 | . . . . . . 7 ⊢ seq1( · , I ) Fn (ℤ≥‘1) |
21 | fnresdm 5307 | . . . . . . 7 ⊢ (seq1( · , I ) Fn (ℤ≥‘1) → (seq1( · , I ) ↾ (ℤ≥‘1)) = seq1( · , I )) | |
22 | 20, 21 | ax-mp 5 | . . . . . 6 ⊢ (seq1( · , I ) ↾ (ℤ≥‘1)) = seq1( · , I ) |
23 | 7, 22 | eqtr3i 2193 | . . . . 5 ⊢ (seq1( · , I ) ↾ (ℕ0 ∖ {0})) = seq1( · , I ) |
24 | 23 | uneq2i 3278 | . . . 4 ⊢ ({〈0, 1〉} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) = ({〈0, 1〉} ∪ seq1( · , I )) |
25 | 3, 24 | eqtr4i 2194 | . . 3 ⊢ ! = ({〈0, 1〉} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) |
26 | 1, 2, 25 | fvsnun2 5694 | . 2 ⊢ (𝑁 ∈ (ℕ0 ∖ {0}) → (!‘𝑁) = (seq1( · , I )‘𝑁)) |
27 | 26, 5 | eleq2s 2265 | 1 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ⊤wtru 1349 ∈ wcel 2141 ∖ cdif 3118 ∪ cun 3119 {csn 3583 〈cop 3586 I cid 4273 ↾ cres 4613 Fn wfn 5193 ‘cfv 5198 (class class class)co 5853 ℂcc 7772 0cc0 7774 1c1 7775 · cmul 7779 ℕcn 8878 ℕ0cn0 9135 ℤ≥cuz 9487 seqcseq 10401 !cfa 10659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-seqfrec 10402 df-fac 10660 |
This theorem is referenced by: fac1 10663 facp1 10664 bcval5 10697 |
Copyright terms: Public domain | W3C validator |