ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facnn GIF version

Theorem facnn 10640
Description: Value of the factorial function for positive integers. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
facnn (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))

Proof of Theorem facnn
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 c0ex 7893 . . 3 0 ∈ V
2 1ex 7894 . . 3 1 ∈ V
3 df-fac 10639 . . . 4 ! = ({⟨0, 1⟩} ∪ seq1( · , I ))
4 nnuz 9501 . . . . . . . 8 ℕ = (ℤ‘1)
5 dfn2 9127 . . . . . . . 8 ℕ = (ℕ0 ∖ {0})
64, 5eqtr3i 2188 . . . . . . 7 (ℤ‘1) = (ℕ0 ∖ {0})
76reseq2i 4881 . . . . . 6 (seq1( · , I ) ↾ (ℤ‘1)) = (seq1( · , I ) ↾ (ℕ0 ∖ {0}))
8 eqid 2165 . . . . . . . . . 10 (ℤ‘1) = (ℤ‘1)
9 1zzd 9218 . . . . . . . . . 10 (⊤ → 1 ∈ ℤ)
10 fvi 5543 . . . . . . . . . . . . . 14 (𝑓 ∈ (ℤ‘1) → ( I ‘𝑓) = 𝑓)
1110eleq1d 2235 . . . . . . . . . . . . 13 (𝑓 ∈ (ℤ‘1) → (( I ‘𝑓) ∈ (ℤ‘1) ↔ 𝑓 ∈ (ℤ‘1)))
1211ibir 176 . . . . . . . . . . . 12 (𝑓 ∈ (ℤ‘1) → ( I ‘𝑓) ∈ (ℤ‘1))
13 eluzelcn 9477 . . . . . . . . . . . 12 (( I ‘𝑓) ∈ (ℤ‘1) → ( I ‘𝑓) ∈ ℂ)
1412, 13syl 14 . . . . . . . . . . 11 (𝑓 ∈ (ℤ‘1) → ( I ‘𝑓) ∈ ℂ)
1514adantl 275 . . . . . . . . . 10 ((⊤ ∧ 𝑓 ∈ (ℤ‘1)) → ( I ‘𝑓) ∈ ℂ)
16 mulcl 7880 . . . . . . . . . . 11 ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ) → (𝑓 · 𝑔) ∈ ℂ)
1716adantl 275 . . . . . . . . . 10 ((⊤ ∧ (𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ)) → (𝑓 · 𝑔) ∈ ℂ)
188, 9, 15, 17seqf 10396 . . . . . . . . 9 (⊤ → seq1( · , I ):(ℤ‘1)⟶ℂ)
1918ffnd 5338 . . . . . . . 8 (⊤ → seq1( · , I ) Fn (ℤ‘1))
2019mptru 1352 . . . . . . 7 seq1( · , I ) Fn (ℤ‘1)
21 fnresdm 5297 . . . . . . 7 (seq1( · , I ) Fn (ℤ‘1) → (seq1( · , I ) ↾ (ℤ‘1)) = seq1( · , I ))
2220, 21ax-mp 5 . . . . . 6 (seq1( · , I ) ↾ (ℤ‘1)) = seq1( · , I )
237, 22eqtr3i 2188 . . . . 5 (seq1( · , I ) ↾ (ℕ0 ∖ {0})) = seq1( · , I )
2423uneq2i 3273 . . . 4 ({⟨0, 1⟩} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) = ({⟨0, 1⟩} ∪ seq1( · , I ))
253, 24eqtr4i 2189 . . 3 ! = ({⟨0, 1⟩} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0})))
261, 2, 25fvsnun2 5683 . 2 (𝑁 ∈ (ℕ0 ∖ {0}) → (!‘𝑁) = (seq1( · , I )‘𝑁))
2726, 5eleq2s 2261 1 (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wtru 1344  wcel 2136  cdif 3113  cun 3114  {csn 3576  cop 3579   I cid 4266  cres 4606   Fn wfn 5183  cfv 5188  (class class class)co 5842  cc 7751  0cc0 7753  1c1 7754   · cmul 7758  cn 8857  0cn0 9114  cuz 9466  seqcseq 10380  !cfa 10638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-seqfrec 10381  df-fac 10639
This theorem is referenced by:  fac1  10642  facp1  10643  bcval5  10676
  Copyright terms: Public domain W3C validator