ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facnn GIF version

Theorem facnn 10688
Description: Value of the factorial function for positive integers. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
facnn (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))

Proof of Theorem facnn
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 c0ex 7939 . . 3 0 ∈ V
2 1ex 7940 . . 3 1 ∈ V
3 df-fac 10687 . . . 4 ! = ({⟨0, 1⟩} ∪ seq1( · , I ))
4 nnuz 9549 . . . . . . . 8 ℕ = (ℤ‘1)
5 dfn2 9175 . . . . . . . 8 ℕ = (ℕ0 ∖ {0})
64, 5eqtr3i 2200 . . . . . . 7 (ℤ‘1) = (ℕ0 ∖ {0})
76reseq2i 4900 . . . . . 6 (seq1( · , I ) ↾ (ℤ‘1)) = (seq1( · , I ) ↾ (ℕ0 ∖ {0}))
8 eqid 2177 . . . . . . . . . 10 (ℤ‘1) = (ℤ‘1)
9 1zzd 9266 . . . . . . . . . 10 (⊤ → 1 ∈ ℤ)
10 fvi 5569 . . . . . . . . . . . . . 14 (𝑓 ∈ (ℤ‘1) → ( I ‘𝑓) = 𝑓)
1110eleq1d 2246 . . . . . . . . . . . . 13 (𝑓 ∈ (ℤ‘1) → (( I ‘𝑓) ∈ (ℤ‘1) ↔ 𝑓 ∈ (ℤ‘1)))
1211ibir 177 . . . . . . . . . . . 12 (𝑓 ∈ (ℤ‘1) → ( I ‘𝑓) ∈ (ℤ‘1))
13 eluzelcn 9525 . . . . . . . . . . . 12 (( I ‘𝑓) ∈ (ℤ‘1) → ( I ‘𝑓) ∈ ℂ)
1412, 13syl 14 . . . . . . . . . . 11 (𝑓 ∈ (ℤ‘1) → ( I ‘𝑓) ∈ ℂ)
1514adantl 277 . . . . . . . . . 10 ((⊤ ∧ 𝑓 ∈ (ℤ‘1)) → ( I ‘𝑓) ∈ ℂ)
16 mulcl 7926 . . . . . . . . . . 11 ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ) → (𝑓 · 𝑔) ∈ ℂ)
1716adantl 277 . . . . . . . . . 10 ((⊤ ∧ (𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ)) → (𝑓 · 𝑔) ∈ ℂ)
188, 9, 15, 17seqf 10444 . . . . . . . . 9 (⊤ → seq1( · , I ):(ℤ‘1)⟶ℂ)
1918ffnd 5362 . . . . . . . 8 (⊤ → seq1( · , I ) Fn (ℤ‘1))
2019mptru 1362 . . . . . . 7 seq1( · , I ) Fn (ℤ‘1)
21 fnresdm 5321 . . . . . . 7 (seq1( · , I ) Fn (ℤ‘1) → (seq1( · , I ) ↾ (ℤ‘1)) = seq1( · , I ))
2220, 21ax-mp 5 . . . . . 6 (seq1( · , I ) ↾ (ℤ‘1)) = seq1( · , I )
237, 22eqtr3i 2200 . . . . 5 (seq1( · , I ) ↾ (ℕ0 ∖ {0})) = seq1( · , I )
2423uneq2i 3286 . . . 4 ({⟨0, 1⟩} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) = ({⟨0, 1⟩} ∪ seq1( · , I ))
253, 24eqtr4i 2201 . . 3 ! = ({⟨0, 1⟩} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0})))
261, 2, 25fvsnun2 5710 . 2 (𝑁 ∈ (ℕ0 ∖ {0}) → (!‘𝑁) = (seq1( · , I )‘𝑁))
2726, 5eleq2s 2272 1 (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wtru 1354  wcel 2148  cdif 3126  cun 3127  {csn 3591  cop 3594   I cid 4285  cres 4625   Fn wfn 5207  cfv 5212  (class class class)co 5869  cc 7797  0cc0 7799  1c1 7800   · cmul 7804  cn 8905  0cn0 9162  cuz 9514  seqcseq 10428  !cfa 10686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7890  ax-resscn 7891  ax-1cn 7892  ax-1re 7893  ax-icn 7894  ax-addcl 7895  ax-addrcl 7896  ax-mulcl 7897  ax-addcom 7899  ax-addass 7901  ax-distr 7903  ax-i2m1 7904  ax-0lt1 7905  ax-0id 7907  ax-rnegex 7908  ax-cnre 7910  ax-pre-ltirr 7911  ax-pre-ltwlin 7912  ax-pre-lttrn 7913  ax-pre-ltadd 7915
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7981  df-mnf 7982  df-xr 7983  df-ltxr 7984  df-le 7985  df-sub 8117  df-neg 8118  df-inn 8906  df-n0 9163  df-z 9240  df-uz 9515  df-seqfrec 10429  df-fac 10687
This theorem is referenced by:  fac1  10690  facp1  10691  bcval5  10724
  Copyright terms: Public domain W3C validator