| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > facnn | GIF version | ||
| Description: Value of the factorial function for positive integers. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| Ref | Expression |
|---|---|
| facnn | ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 8048 | . . 3 ⊢ 0 ∈ V | |
| 2 | 1ex 8049 | . . 3 ⊢ 1 ∈ V | |
| 3 | df-fac 10852 | . . . 4 ⊢ ! = ({〈0, 1〉} ∪ seq1( · , I )) | |
| 4 | nnuz 9666 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
| 5 | dfn2 9290 | . . . . . . . 8 ⊢ ℕ = (ℕ0 ∖ {0}) | |
| 6 | 4, 5 | eqtr3i 2227 | . . . . . . 7 ⊢ (ℤ≥‘1) = (ℕ0 ∖ {0}) |
| 7 | 6 | reseq2i 4953 | . . . . . 6 ⊢ (seq1( · , I ) ↾ (ℤ≥‘1)) = (seq1( · , I ) ↾ (ℕ0 ∖ {0})) |
| 8 | eqid 2204 | . . . . . . . . . 10 ⊢ (ℤ≥‘1) = (ℤ≥‘1) | |
| 9 | 1zzd 9381 | . . . . . . . . . 10 ⊢ (⊤ → 1 ∈ ℤ) | |
| 10 | fvi 5630 | . . . . . . . . . . . . . 14 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) = 𝑓) | |
| 11 | 10 | eleq1d 2273 | . . . . . . . . . . . . 13 ⊢ (𝑓 ∈ (ℤ≥‘1) → (( I ‘𝑓) ∈ (ℤ≥‘1) ↔ 𝑓 ∈ (ℤ≥‘1))) |
| 12 | 11 | ibir 177 | . . . . . . . . . . . 12 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ (ℤ≥‘1)) |
| 13 | eluzelcn 9641 | . . . . . . . . . . . 12 ⊢ (( I ‘𝑓) ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ ℂ) | |
| 14 | 12, 13 | syl 14 | . . . . . . . . . . 11 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ ℂ) |
| 15 | 14 | adantl 277 | . . . . . . . . . 10 ⊢ ((⊤ ∧ 𝑓 ∈ (ℤ≥‘1)) → ( I ‘𝑓) ∈ ℂ) |
| 16 | mulcl 8034 | . . . . . . . . . . 11 ⊢ ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ) → (𝑓 · 𝑔) ∈ ℂ) | |
| 17 | 16 | adantl 277 | . . . . . . . . . 10 ⊢ ((⊤ ∧ (𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ)) → (𝑓 · 𝑔) ∈ ℂ) |
| 18 | 8, 9, 15, 17 | seqf 10590 | . . . . . . . . 9 ⊢ (⊤ → seq1( · , I ):(ℤ≥‘1)⟶ℂ) |
| 19 | 18 | ffnd 5420 | . . . . . . . 8 ⊢ (⊤ → seq1( · , I ) Fn (ℤ≥‘1)) |
| 20 | 19 | mptru 1381 | . . . . . . 7 ⊢ seq1( · , I ) Fn (ℤ≥‘1) |
| 21 | fnresdm 5379 | . . . . . . 7 ⊢ (seq1( · , I ) Fn (ℤ≥‘1) → (seq1( · , I ) ↾ (ℤ≥‘1)) = seq1( · , I )) | |
| 22 | 20, 21 | ax-mp 5 | . . . . . 6 ⊢ (seq1( · , I ) ↾ (ℤ≥‘1)) = seq1( · , I ) |
| 23 | 7, 22 | eqtr3i 2227 | . . . . 5 ⊢ (seq1( · , I ) ↾ (ℕ0 ∖ {0})) = seq1( · , I ) |
| 24 | 23 | uneq2i 3323 | . . . 4 ⊢ ({〈0, 1〉} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) = ({〈0, 1〉} ∪ seq1( · , I )) |
| 25 | 3, 24 | eqtr4i 2228 | . . 3 ⊢ ! = ({〈0, 1〉} ∪ (seq1( · , I ) ↾ (ℕ0 ∖ {0}))) |
| 26 | 1, 2, 25 | fvsnun2 5772 | . 2 ⊢ (𝑁 ∈ (ℕ0 ∖ {0}) → (!‘𝑁) = (seq1( · , I )‘𝑁)) |
| 27 | 26, 5 | eleq2s 2299 | 1 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ⊤wtru 1373 ∈ wcel 2175 ∖ cdif 3162 ∪ cun 3163 {csn 3632 〈cop 3635 I cid 4333 ↾ cres 4675 Fn wfn 5263 ‘cfv 5268 (class class class)co 5934 ℂcc 7905 0cc0 7907 1c1 7908 · cmul 7912 ℕcn 9018 ℕ0cn0 9277 ℤ≥cuz 9630 seqcseq 10573 !cfa 10851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-frec 6467 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-inn 9019 df-n0 9278 df-z 9355 df-uz 9631 df-seqfrec 10574 df-fac 10852 |
| This theorem is referenced by: fac1 10855 facp1 10856 bcval5 10889 |
| Copyright terms: Public domain | W3C validator |