ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpm2r GIF version

Theorem elpm2r 6743
Description: Sufficient condition for being a partial function. (Contributed by NM, 31-Dec-2013.)
Assertion
Ref Expression
elpm2r (((𝐴𝑉𝐵𝑊) ∧ (𝐹:𝐶𝐴𝐶𝐵)) → 𝐹 ∈ (𝐴pm 𝐵))

Proof of Theorem elpm2r
StepHypRef Expression
1 fdm 5425 . . . . . . 7 (𝐹:𝐶𝐴 → dom 𝐹 = 𝐶)
21feq2d 5407 . . . . . 6 (𝐹:𝐶𝐴 → (𝐹:dom 𝐹𝐴𝐹:𝐶𝐴))
31sseq1d 3221 . . . . . 6 (𝐹:𝐶𝐴 → (dom 𝐹𝐵𝐶𝐵))
42, 3anbi12d 473 . . . . 5 (𝐹:𝐶𝐴 → ((𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵) ↔ (𝐹:𝐶𝐴𝐶𝐵)))
54adantr 276 . . . 4 ((𝐹:𝐶𝐴𝐶𝐵) → ((𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵) ↔ (𝐹:𝐶𝐴𝐶𝐵)))
65ibir 177 . . 3 ((𝐹:𝐶𝐴𝐶𝐵) → (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵))
7 elpm2g 6742 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐹 ∈ (𝐴pm 𝐵) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵)))
86, 7imbitrrid 156 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐹:𝐶𝐴𝐶𝐵) → 𝐹 ∈ (𝐴pm 𝐵)))
98imp 124 1 (((𝐴𝑉𝐵𝑊) ∧ (𝐹:𝐶𝐴𝐶𝐵)) → 𝐹 ∈ (𝐴pm 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2175  wss 3165  dom cdm 4673  wf 5264  (class class class)co 5934  pm cpm 6726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pm 6728
This theorem is referenced by:  fpmg  6751  pmresg  6753  ennnfonelemg  12693  lmbrf  14605  ellimc3apf  15050  dvfvalap  15071  dvmulxxbr  15092  dvaddxx  15093  dvmulxx  15094  dviaddf  15095  dvimulf  15096  dvcoapbr  15097  dvmptclx  15108
  Copyright terms: Public domain W3C validator