ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpm2r GIF version

Theorem elpm2r 6526
Description: Sufficient condition for being a partial function. (Contributed by NM, 31-Dec-2013.)
Assertion
Ref Expression
elpm2r (((𝐴𝑉𝐵𝑊) ∧ (𝐹:𝐶𝐴𝐶𝐵)) → 𝐹 ∈ (𝐴pm 𝐵))

Proof of Theorem elpm2r
StepHypRef Expression
1 fdm 5246 . . . . . . 7 (𝐹:𝐶𝐴 → dom 𝐹 = 𝐶)
21feq2d 5228 . . . . . 6 (𝐹:𝐶𝐴 → (𝐹:dom 𝐹𝐴𝐹:𝐶𝐴))
31sseq1d 3094 . . . . . 6 (𝐹:𝐶𝐴 → (dom 𝐹𝐵𝐶𝐵))
42, 3anbi12d 462 . . . . 5 (𝐹:𝐶𝐴 → ((𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵) ↔ (𝐹:𝐶𝐴𝐶𝐵)))
54adantr 272 . . . 4 ((𝐹:𝐶𝐴𝐶𝐵) → ((𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵) ↔ (𝐹:𝐶𝐴𝐶𝐵)))
65ibir 176 . . 3 ((𝐹:𝐶𝐴𝐶𝐵) → (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵))
7 elpm2g 6525 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐹 ∈ (𝐴pm 𝐵) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵)))
86, 7syl5ibr 155 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐹:𝐶𝐴𝐶𝐵) → 𝐹 ∈ (𝐴pm 𝐵)))
98imp 123 1 (((𝐴𝑉𝐵𝑊) ∧ (𝐹:𝐶𝐴𝐶𝐵)) → 𝐹 ∈ (𝐴pm 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 1463  wss 3039  dom cdm 4507  wf 5087  (class class class)co 5740  pm cpm 6509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-fv 5099  df-ov 5743  df-oprab 5744  df-mpo 5745  df-pm 6511
This theorem is referenced by:  fpmg  6534  pmresg  6536  ennnfonelemg  11811  lmbrf  12279  ellimc3apf  12681  dvfvalap  12702  dvmulxxbr  12718  dvaddxx  12719  dvmulxx  12720  dviaddf  12721  dvimulf  12722  dvcoapbr  12723  dvmptclx  12732
  Copyright terms: Public domain W3C validator