| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpr2 | GIF version | ||
| Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| elpr2.1 | ⊢ 𝐵 ∈ V |
| elpr2.2 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| elpr2 | ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprg 3658 | . . 3 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
| 2 | 1 | ibi 176 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| 3 | elpr2.1 | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 4 | eleq1 2269 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
| 5 | 3, 4 | mpbiri 168 | . . . . 5 ⊢ (𝐴 = 𝐵 → 𝐴 ∈ V) |
| 6 | elpr2.2 | . . . . . 6 ⊢ 𝐶 ∈ V | |
| 7 | eleq1 2269 | . . . . . 6 ⊢ (𝐴 = 𝐶 → (𝐴 ∈ V ↔ 𝐶 ∈ V)) | |
| 8 | 6, 7 | mpbiri 168 | . . . . 5 ⊢ (𝐴 = 𝐶 → 𝐴 ∈ V) |
| 9 | 5, 8 | jaoi 718 | . . . 4 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → 𝐴 ∈ V) |
| 10 | elprg 3658 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
| 11 | 9, 10 | syl 14 | . . 3 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
| 12 | 11 | ibir 177 | . 2 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → 𝐴 ∈ {𝐵, 𝐶}) |
| 13 | 2, 12 | impbii 126 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2177 Vcvv 2773 {cpr 3639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 |
| This theorem is referenced by: elxr 9918 |
| Copyright terms: Public domain | W3C validator |