![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expcllem | GIF version |
Description: Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005.) |
Ref | Expression |
---|---|
expcllem.1 | ⊢ 𝐹 ⊆ ℂ |
expcllem.2 | ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 · 𝑦) ∈ 𝐹) |
expcllem.3 | ⊢ 1 ∈ 𝐹 |
Ref | Expression |
---|---|
expcllem | ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝐵) ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 9174 | . 2 ⊢ (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) | |
2 | oveq2 5880 | . . . . . . 7 ⊢ (𝑧 = 1 → (𝐴↑𝑧) = (𝐴↑1)) | |
3 | 2 | eleq1d 2246 | . . . . . 6 ⊢ (𝑧 = 1 → ((𝐴↑𝑧) ∈ 𝐹 ↔ (𝐴↑1) ∈ 𝐹)) |
4 | 3 | imbi2d 230 | . . . . 5 ⊢ (𝑧 = 1 → ((𝐴 ∈ 𝐹 → (𝐴↑𝑧) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑1) ∈ 𝐹))) |
5 | oveq2 5880 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (𝐴↑𝑧) = (𝐴↑𝑤)) | |
6 | 5 | eleq1d 2246 | . . . . . 6 ⊢ (𝑧 = 𝑤 → ((𝐴↑𝑧) ∈ 𝐹 ↔ (𝐴↑𝑤) ∈ 𝐹)) |
7 | 6 | imbi2d 230 | . . . . 5 ⊢ (𝑧 = 𝑤 → ((𝐴 ∈ 𝐹 → (𝐴↑𝑧) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑𝑤) ∈ 𝐹))) |
8 | oveq2 5880 | . . . . . . 7 ⊢ (𝑧 = (𝑤 + 1) → (𝐴↑𝑧) = (𝐴↑(𝑤 + 1))) | |
9 | 8 | eleq1d 2246 | . . . . . 6 ⊢ (𝑧 = (𝑤 + 1) → ((𝐴↑𝑧) ∈ 𝐹 ↔ (𝐴↑(𝑤 + 1)) ∈ 𝐹)) |
10 | 9 | imbi2d 230 | . . . . 5 ⊢ (𝑧 = (𝑤 + 1) → ((𝐴 ∈ 𝐹 → (𝐴↑𝑧) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹))) |
11 | oveq2 5880 | . . . . . . 7 ⊢ (𝑧 = 𝐵 → (𝐴↑𝑧) = (𝐴↑𝐵)) | |
12 | 11 | eleq1d 2246 | . . . . . 6 ⊢ (𝑧 = 𝐵 → ((𝐴↑𝑧) ∈ 𝐹 ↔ (𝐴↑𝐵) ∈ 𝐹)) |
13 | 12 | imbi2d 230 | . . . . 5 ⊢ (𝑧 = 𝐵 → ((𝐴 ∈ 𝐹 → (𝐴↑𝑧) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑𝐵) ∈ 𝐹))) |
14 | expcllem.1 | . . . . . . . . 9 ⊢ 𝐹 ⊆ ℂ | |
15 | 14 | sseli 3151 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝐹 → 𝐴 ∈ ℂ) |
16 | exp1 10521 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
17 | 15, 16 | syl 14 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐹 → (𝐴↑1) = 𝐴) |
18 | 17 | eleq1d 2246 | . . . . . 6 ⊢ (𝐴 ∈ 𝐹 → ((𝐴↑1) ∈ 𝐹 ↔ 𝐴 ∈ 𝐹)) |
19 | 18 | ibir 177 | . . . . 5 ⊢ (𝐴 ∈ 𝐹 → (𝐴↑1) ∈ 𝐹) |
20 | expcllem.2 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 · 𝑦) ∈ 𝐹) | |
21 | 20 | caovcl 6026 | . . . . . . . . . . 11 ⊢ (((𝐴↑𝑤) ∈ 𝐹 ∧ 𝐴 ∈ 𝐹) → ((𝐴↑𝑤) · 𝐴) ∈ 𝐹) |
22 | 21 | ancoms 268 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ 𝐹 ∧ (𝐴↑𝑤) ∈ 𝐹) → ((𝐴↑𝑤) · 𝐴) ∈ 𝐹) |
23 | 22 | adantlr 477 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ) ∧ (𝐴↑𝑤) ∈ 𝐹) → ((𝐴↑𝑤) · 𝐴) ∈ 𝐹) |
24 | nnnn0 9179 | . . . . . . . . . . . 12 ⊢ (𝑤 ∈ ℕ → 𝑤 ∈ ℕ0) | |
25 | expp1 10522 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℕ0) → (𝐴↑(𝑤 + 1)) = ((𝐴↑𝑤) · 𝐴)) | |
26 | 15, 24, 25 | syl2an 289 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ) → (𝐴↑(𝑤 + 1)) = ((𝐴↑𝑤) · 𝐴)) |
27 | 26 | eleq1d 2246 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ) → ((𝐴↑(𝑤 + 1)) ∈ 𝐹 ↔ ((𝐴↑𝑤) · 𝐴) ∈ 𝐹)) |
28 | 27 | adantr 276 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ) ∧ (𝐴↑𝑤) ∈ 𝐹) → ((𝐴↑(𝑤 + 1)) ∈ 𝐹 ↔ ((𝐴↑𝑤) · 𝐴) ∈ 𝐹)) |
29 | 23, 28 | mpbird 167 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ) ∧ (𝐴↑𝑤) ∈ 𝐹) → (𝐴↑(𝑤 + 1)) ∈ 𝐹) |
30 | 29 | exp31 364 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐹 → (𝑤 ∈ ℕ → ((𝐴↑𝑤) ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹))) |
31 | 30 | com12 30 | . . . . . 6 ⊢ (𝑤 ∈ ℕ → (𝐴 ∈ 𝐹 → ((𝐴↑𝑤) ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹))) |
32 | 31 | a2d 26 | . . . . 5 ⊢ (𝑤 ∈ ℕ → ((𝐴 ∈ 𝐹 → (𝐴↑𝑤) ∈ 𝐹) → (𝐴 ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹))) |
33 | 4, 7, 10, 13, 19, 32 | nnind 8931 | . . . 4 ⊢ (𝐵 ∈ ℕ → (𝐴 ∈ 𝐹 → (𝐴↑𝐵) ∈ 𝐹)) |
34 | 33 | impcom 125 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ ℕ) → (𝐴↑𝐵) ∈ 𝐹) |
35 | oveq2 5880 | . . . . 5 ⊢ (𝐵 = 0 → (𝐴↑𝐵) = (𝐴↑0)) | |
36 | exp0 10519 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | |
37 | 15, 36 | syl 14 | . . . . 5 ⊢ (𝐴 ∈ 𝐹 → (𝐴↑0) = 1) |
38 | 35, 37 | sylan9eqr 2232 | . . . 4 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 = 0) → (𝐴↑𝐵) = 1) |
39 | expcllem.3 | . . . 4 ⊢ 1 ∈ 𝐹 | |
40 | 38, 39 | eqeltrdi 2268 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 = 0) → (𝐴↑𝐵) ∈ 𝐹) |
41 | 34, 40 | jaodan 797 | . 2 ⊢ ((𝐴 ∈ 𝐹 ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝐴↑𝐵) ∈ 𝐹) |
42 | 1, 41 | sylan2b 287 | 1 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝐵) ∈ 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 708 = wceq 1353 ∈ wcel 2148 ⊆ wss 3129 (class class class)co 5872 ℂcc 7806 0cc0 7808 1c1 7809 + caddc 7811 · cmul 7813 ℕcn 8915 ℕ0cn0 9172 ↑cexp 10514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4117 ax-sep 4120 ax-nul 4128 ax-pow 4173 ax-pr 4208 ax-un 4432 ax-setind 4535 ax-iinf 4586 ax-cnex 7899 ax-resscn 7900 ax-1cn 7901 ax-1re 7902 ax-icn 7903 ax-addcl 7904 ax-addrcl 7905 ax-mulcl 7906 ax-mulrcl 7907 ax-addcom 7908 ax-mulcom 7909 ax-addass 7910 ax-mulass 7911 ax-distr 7912 ax-i2m1 7913 ax-0lt1 7914 ax-1rid 7915 ax-0id 7916 ax-rnegex 7917 ax-precex 7918 ax-cnre 7919 ax-pre-ltirr 7920 ax-pre-ltwlin 7921 ax-pre-lttrn 7922 ax-pre-apti 7923 ax-pre-ltadd 7924 ax-pre-mulgt0 7925 ax-pre-mulext 7926 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4003 df-opab 4064 df-mpt 4065 df-tr 4101 df-id 4292 df-po 4295 df-iso 4296 df-iord 4365 df-on 4367 df-ilim 4368 df-suc 4370 df-iom 4589 df-xp 4631 df-rel 4632 df-cnv 4633 df-co 4634 df-dm 4635 df-rn 4636 df-res 4637 df-ima 4638 df-iota 5177 df-fun 5217 df-fn 5218 df-f 5219 df-f1 5220 df-fo 5221 df-f1o 5222 df-fv 5223 df-riota 5828 df-ov 5875 df-oprab 5876 df-mpo 5877 df-1st 6138 df-2nd 6139 df-recs 6303 df-frec 6389 df-pnf 7990 df-mnf 7991 df-xr 7992 df-ltxr 7993 df-le 7994 df-sub 8126 df-neg 8127 df-reap 8528 df-ap 8535 df-div 8626 df-inn 8916 df-n0 9173 df-z 9250 df-uz 9525 df-seqfrec 10441 df-exp 10515 |
This theorem is referenced by: expcl2lemap 10527 nnexpcl 10528 nn0expcl 10529 zexpcl 10530 qexpcl 10531 reexpcl 10532 expcl 10533 expge0 10551 expge1 10552 lgsfcl2 14278 |
Copyright terms: Public domain | W3C validator |