ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcllem GIF version

Theorem expcllem 10642
Description: Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005.)
Hypotheses
Ref Expression
expcllem.1 𝐹 ⊆ ℂ
expcllem.2 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
expcllem.3 1 ∈ 𝐹
Assertion
Ref Expression
expcllem ((𝐴𝐹𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ 𝐹)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑥,𝐹,𝑦
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem expcllem
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 9251 . 2 (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0))
2 oveq2 5930 . . . . . . 7 (𝑧 = 1 → (𝐴𝑧) = (𝐴↑1))
32eleq1d 2265 . . . . . 6 (𝑧 = 1 → ((𝐴𝑧) ∈ 𝐹 ↔ (𝐴↑1) ∈ 𝐹))
43imbi2d 230 . . . . 5 (𝑧 = 1 → ((𝐴𝐹 → (𝐴𝑧) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴↑1) ∈ 𝐹)))
5 oveq2 5930 . . . . . . 7 (𝑧 = 𝑤 → (𝐴𝑧) = (𝐴𝑤))
65eleq1d 2265 . . . . . 6 (𝑧 = 𝑤 → ((𝐴𝑧) ∈ 𝐹 ↔ (𝐴𝑤) ∈ 𝐹))
76imbi2d 230 . . . . 5 (𝑧 = 𝑤 → ((𝐴𝐹 → (𝐴𝑧) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴𝑤) ∈ 𝐹)))
8 oveq2 5930 . . . . . . 7 (𝑧 = (𝑤 + 1) → (𝐴𝑧) = (𝐴↑(𝑤 + 1)))
98eleq1d 2265 . . . . . 6 (𝑧 = (𝑤 + 1) → ((𝐴𝑧) ∈ 𝐹 ↔ (𝐴↑(𝑤 + 1)) ∈ 𝐹))
109imbi2d 230 . . . . 5 (𝑧 = (𝑤 + 1) → ((𝐴𝐹 → (𝐴𝑧) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹)))
11 oveq2 5930 . . . . . . 7 (𝑧 = 𝐵 → (𝐴𝑧) = (𝐴𝐵))
1211eleq1d 2265 . . . . . 6 (𝑧 = 𝐵 → ((𝐴𝑧) ∈ 𝐹 ↔ (𝐴𝐵) ∈ 𝐹))
1312imbi2d 230 . . . . 5 (𝑧 = 𝐵 → ((𝐴𝐹 → (𝐴𝑧) ∈ 𝐹) ↔ (𝐴𝐹 → (𝐴𝐵) ∈ 𝐹)))
14 expcllem.1 . . . . . . . . 9 𝐹 ⊆ ℂ
1514sseli 3179 . . . . . . . 8 (𝐴𝐹𝐴 ∈ ℂ)
16 exp1 10637 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
1715, 16syl 14 . . . . . . 7 (𝐴𝐹 → (𝐴↑1) = 𝐴)
1817eleq1d 2265 . . . . . 6 (𝐴𝐹 → ((𝐴↑1) ∈ 𝐹𝐴𝐹))
1918ibir 177 . . . . 5 (𝐴𝐹 → (𝐴↑1) ∈ 𝐹)
20 expcllem.2 . . . . . . . . . . . 12 ((𝑥𝐹𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
2120caovcl 6078 . . . . . . . . . . 11 (((𝐴𝑤) ∈ 𝐹𝐴𝐹) → ((𝐴𝑤) · 𝐴) ∈ 𝐹)
2221ancoms 268 . . . . . . . . . 10 ((𝐴𝐹 ∧ (𝐴𝑤) ∈ 𝐹) → ((𝐴𝑤) · 𝐴) ∈ 𝐹)
2322adantlr 477 . . . . . . . . 9 (((𝐴𝐹𝑤 ∈ ℕ) ∧ (𝐴𝑤) ∈ 𝐹) → ((𝐴𝑤) · 𝐴) ∈ 𝐹)
24 nnnn0 9256 . . . . . . . . . . . 12 (𝑤 ∈ ℕ → 𝑤 ∈ ℕ0)
25 expp1 10638 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℕ0) → (𝐴↑(𝑤 + 1)) = ((𝐴𝑤) · 𝐴))
2615, 24, 25syl2an 289 . . . . . . . . . . 11 ((𝐴𝐹𝑤 ∈ ℕ) → (𝐴↑(𝑤 + 1)) = ((𝐴𝑤) · 𝐴))
2726eleq1d 2265 . . . . . . . . . 10 ((𝐴𝐹𝑤 ∈ ℕ) → ((𝐴↑(𝑤 + 1)) ∈ 𝐹 ↔ ((𝐴𝑤) · 𝐴) ∈ 𝐹))
2827adantr 276 . . . . . . . . 9 (((𝐴𝐹𝑤 ∈ ℕ) ∧ (𝐴𝑤) ∈ 𝐹) → ((𝐴↑(𝑤 + 1)) ∈ 𝐹 ↔ ((𝐴𝑤) · 𝐴) ∈ 𝐹))
2923, 28mpbird 167 . . . . . . . 8 (((𝐴𝐹𝑤 ∈ ℕ) ∧ (𝐴𝑤) ∈ 𝐹) → (𝐴↑(𝑤 + 1)) ∈ 𝐹)
3029exp31 364 . . . . . . 7 (𝐴𝐹 → (𝑤 ∈ ℕ → ((𝐴𝑤) ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹)))
3130com12 30 . . . . . 6 (𝑤 ∈ ℕ → (𝐴𝐹 → ((𝐴𝑤) ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹)))
3231a2d 26 . . . . 5 (𝑤 ∈ ℕ → ((𝐴𝐹 → (𝐴𝑤) ∈ 𝐹) → (𝐴𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹)))
334, 7, 10, 13, 19, 32nnind 9006 . . . 4 (𝐵 ∈ ℕ → (𝐴𝐹 → (𝐴𝐵) ∈ 𝐹))
3433impcom 125 . . 3 ((𝐴𝐹𝐵 ∈ ℕ) → (𝐴𝐵) ∈ 𝐹)
35 oveq2 5930 . . . . 5 (𝐵 = 0 → (𝐴𝐵) = (𝐴↑0))
36 exp0 10635 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
3715, 36syl 14 . . . . 5 (𝐴𝐹 → (𝐴↑0) = 1)
3835, 37sylan9eqr 2251 . . . 4 ((𝐴𝐹𝐵 = 0) → (𝐴𝐵) = 1)
39 expcllem.3 . . . 4 1 ∈ 𝐹
4038, 39eqeltrdi 2287 . . 3 ((𝐴𝐹𝐵 = 0) → (𝐴𝐵) ∈ 𝐹)
4134, 40jaodan 798 . 2 ((𝐴𝐹 ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝐴𝐵) ∈ 𝐹)
421, 41sylan2b 287 1 ((𝐴𝐹𝐵 ∈ ℕ0) → (𝐴𝐵) ∈ 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wcel 2167  wss 3157  (class class class)co 5922  cc 7877  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884  cn 8990  0cn0 9249  cexp 10630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540  df-exp 10631
This theorem is referenced by:  expcl2lemap  10643  nnexpcl  10644  nn0expcl  10645  zexpcl  10646  qexpcl  10647  reexpcl  10648  expcl  10649  expge0  10667  expge1  10668  lgsfcl2  15247
  Copyright terms: Public domain W3C validator