| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expcllem | GIF version | ||
| Description: Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005.) |
| Ref | Expression |
|---|---|
| expcllem.1 | ⊢ 𝐹 ⊆ ℂ |
| expcllem.2 | ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 · 𝑦) ∈ 𝐹) |
| expcllem.3 | ⊢ 1 ∈ 𝐹 |
| Ref | Expression |
|---|---|
| expcllem | ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝐵) ∈ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9253 | . 2 ⊢ (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) | |
| 2 | oveq2 5931 | . . . . . . 7 ⊢ (𝑧 = 1 → (𝐴↑𝑧) = (𝐴↑1)) | |
| 3 | 2 | eleq1d 2265 | . . . . . 6 ⊢ (𝑧 = 1 → ((𝐴↑𝑧) ∈ 𝐹 ↔ (𝐴↑1) ∈ 𝐹)) |
| 4 | 3 | imbi2d 230 | . . . . 5 ⊢ (𝑧 = 1 → ((𝐴 ∈ 𝐹 → (𝐴↑𝑧) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑1) ∈ 𝐹))) |
| 5 | oveq2 5931 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (𝐴↑𝑧) = (𝐴↑𝑤)) | |
| 6 | 5 | eleq1d 2265 | . . . . . 6 ⊢ (𝑧 = 𝑤 → ((𝐴↑𝑧) ∈ 𝐹 ↔ (𝐴↑𝑤) ∈ 𝐹)) |
| 7 | 6 | imbi2d 230 | . . . . 5 ⊢ (𝑧 = 𝑤 → ((𝐴 ∈ 𝐹 → (𝐴↑𝑧) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑𝑤) ∈ 𝐹))) |
| 8 | oveq2 5931 | . . . . . . 7 ⊢ (𝑧 = (𝑤 + 1) → (𝐴↑𝑧) = (𝐴↑(𝑤 + 1))) | |
| 9 | 8 | eleq1d 2265 | . . . . . 6 ⊢ (𝑧 = (𝑤 + 1) → ((𝐴↑𝑧) ∈ 𝐹 ↔ (𝐴↑(𝑤 + 1)) ∈ 𝐹)) |
| 10 | 9 | imbi2d 230 | . . . . 5 ⊢ (𝑧 = (𝑤 + 1) → ((𝐴 ∈ 𝐹 → (𝐴↑𝑧) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹))) |
| 11 | oveq2 5931 | . . . . . . 7 ⊢ (𝑧 = 𝐵 → (𝐴↑𝑧) = (𝐴↑𝐵)) | |
| 12 | 11 | eleq1d 2265 | . . . . . 6 ⊢ (𝑧 = 𝐵 → ((𝐴↑𝑧) ∈ 𝐹 ↔ (𝐴↑𝐵) ∈ 𝐹)) |
| 13 | 12 | imbi2d 230 | . . . . 5 ⊢ (𝑧 = 𝐵 → ((𝐴 ∈ 𝐹 → (𝐴↑𝑧) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑𝐵) ∈ 𝐹))) |
| 14 | expcllem.1 | . . . . . . . . 9 ⊢ 𝐹 ⊆ ℂ | |
| 15 | 14 | sseli 3180 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝐹 → 𝐴 ∈ ℂ) |
| 16 | exp1 10639 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
| 17 | 15, 16 | syl 14 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐹 → (𝐴↑1) = 𝐴) |
| 18 | 17 | eleq1d 2265 | . . . . . 6 ⊢ (𝐴 ∈ 𝐹 → ((𝐴↑1) ∈ 𝐹 ↔ 𝐴 ∈ 𝐹)) |
| 19 | 18 | ibir 177 | . . . . 5 ⊢ (𝐴 ∈ 𝐹 → (𝐴↑1) ∈ 𝐹) |
| 20 | expcllem.2 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 · 𝑦) ∈ 𝐹) | |
| 21 | 20 | caovcl 6079 | . . . . . . . . . . 11 ⊢ (((𝐴↑𝑤) ∈ 𝐹 ∧ 𝐴 ∈ 𝐹) → ((𝐴↑𝑤) · 𝐴) ∈ 𝐹) |
| 22 | 21 | ancoms 268 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ 𝐹 ∧ (𝐴↑𝑤) ∈ 𝐹) → ((𝐴↑𝑤) · 𝐴) ∈ 𝐹) |
| 23 | 22 | adantlr 477 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ) ∧ (𝐴↑𝑤) ∈ 𝐹) → ((𝐴↑𝑤) · 𝐴) ∈ 𝐹) |
| 24 | nnnn0 9258 | . . . . . . . . . . . 12 ⊢ (𝑤 ∈ ℕ → 𝑤 ∈ ℕ0) | |
| 25 | expp1 10640 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℕ0) → (𝐴↑(𝑤 + 1)) = ((𝐴↑𝑤) · 𝐴)) | |
| 26 | 15, 24, 25 | syl2an 289 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ) → (𝐴↑(𝑤 + 1)) = ((𝐴↑𝑤) · 𝐴)) |
| 27 | 26 | eleq1d 2265 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ) → ((𝐴↑(𝑤 + 1)) ∈ 𝐹 ↔ ((𝐴↑𝑤) · 𝐴) ∈ 𝐹)) |
| 28 | 27 | adantr 276 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ) ∧ (𝐴↑𝑤) ∈ 𝐹) → ((𝐴↑(𝑤 + 1)) ∈ 𝐹 ↔ ((𝐴↑𝑤) · 𝐴) ∈ 𝐹)) |
| 29 | 23, 28 | mpbird 167 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ) ∧ (𝐴↑𝑤) ∈ 𝐹) → (𝐴↑(𝑤 + 1)) ∈ 𝐹) |
| 30 | 29 | exp31 364 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐹 → (𝑤 ∈ ℕ → ((𝐴↑𝑤) ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹))) |
| 31 | 30 | com12 30 | . . . . . 6 ⊢ (𝑤 ∈ ℕ → (𝐴 ∈ 𝐹 → ((𝐴↑𝑤) ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹))) |
| 32 | 31 | a2d 26 | . . . . 5 ⊢ (𝑤 ∈ ℕ → ((𝐴 ∈ 𝐹 → (𝐴↑𝑤) ∈ 𝐹) → (𝐴 ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹))) |
| 33 | 4, 7, 10, 13, 19, 32 | nnind 9008 | . . . 4 ⊢ (𝐵 ∈ ℕ → (𝐴 ∈ 𝐹 → (𝐴↑𝐵) ∈ 𝐹)) |
| 34 | 33 | impcom 125 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ ℕ) → (𝐴↑𝐵) ∈ 𝐹) |
| 35 | oveq2 5931 | . . . . 5 ⊢ (𝐵 = 0 → (𝐴↑𝐵) = (𝐴↑0)) | |
| 36 | exp0 10637 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | |
| 37 | 15, 36 | syl 14 | . . . . 5 ⊢ (𝐴 ∈ 𝐹 → (𝐴↑0) = 1) |
| 38 | 35, 37 | sylan9eqr 2251 | . . . 4 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 = 0) → (𝐴↑𝐵) = 1) |
| 39 | expcllem.3 | . . . 4 ⊢ 1 ∈ 𝐹 | |
| 40 | 38, 39 | eqeltrdi 2287 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 = 0) → (𝐴↑𝐵) ∈ 𝐹) |
| 41 | 34, 40 | jaodan 798 | . 2 ⊢ ((𝐴 ∈ 𝐹 ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝐴↑𝐵) ∈ 𝐹) |
| 42 | 1, 41 | sylan2b 287 | 1 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝐵) ∈ 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 (class class class)co 5923 ℂcc 7879 0cc0 7881 1c1 7882 + caddc 7884 · cmul 7886 ℕcn 8992 ℕ0cn0 9251 ↑cexp 10632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-mulrcl 7980 ax-addcom 7981 ax-mulcom 7982 ax-addass 7983 ax-mulass 7984 ax-distr 7985 ax-i2m1 7986 ax-0lt1 7987 ax-1rid 7988 ax-0id 7989 ax-rnegex 7990 ax-precex 7991 ax-cnre 7992 ax-pre-ltirr 7993 ax-pre-ltwlin 7994 ax-pre-lttrn 7995 ax-pre-apti 7996 ax-pre-ltadd 7997 ax-pre-mulgt0 7998 ax-pre-mulext 7999 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6199 df-2nd 6200 df-recs 6364 df-frec 6450 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 df-sub 8201 df-neg 8202 df-reap 8604 df-ap 8611 df-div 8702 df-inn 8993 df-n0 9252 df-z 9329 df-uz 9604 df-seqfrec 10542 df-exp 10633 |
| This theorem is referenced by: expcl2lemap 10645 nnexpcl 10646 nn0expcl 10647 zexpcl 10648 qexpcl 10649 reexpcl 10650 expcl 10651 expge0 10669 expge1 10670 lgsfcl2 15257 |
| Copyright terms: Public domain | W3C validator |