ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcllem GIF version

Theorem expcllem 10531
Description: Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005.)
Hypotheses
Ref Expression
expcllem.1 ๐น โŠ† โ„‚
expcllem.2 ((๐‘ฅ โˆˆ ๐น โˆง ๐‘ฆ โˆˆ ๐น) โ†’ (๐‘ฅ ยท ๐‘ฆ) โˆˆ ๐น)
expcllem.3 1 โˆˆ ๐น
Assertion
Ref Expression
expcllem ((๐ด โˆˆ ๐น โˆง ๐ต โˆˆ โ„•0) โ†’ (๐ดโ†‘๐ต) โˆˆ ๐น)
Distinct variable groups:   ๐‘ฅ,๐‘ฆ,๐ด   ๐‘ฅ,๐ต   ๐‘ฅ,๐น,๐‘ฆ
Allowed substitution hint:   ๐ต(๐‘ฆ)

Proof of Theorem expcllem
Dummy variables ๐‘ง ๐‘ค are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 9178 . 2 (๐ต โˆˆ โ„•0 โ†” (๐ต โˆˆ โ„• โˆจ ๐ต = 0))
2 oveq2 5883 . . . . . . 7 (๐‘ง = 1 โ†’ (๐ดโ†‘๐‘ง) = (๐ดโ†‘1))
32eleq1d 2246 . . . . . 6 (๐‘ง = 1 โ†’ ((๐ดโ†‘๐‘ง) โˆˆ ๐น โ†” (๐ดโ†‘1) โˆˆ ๐น))
43imbi2d 230 . . . . 5 (๐‘ง = 1 โ†’ ((๐ด โˆˆ ๐น โ†’ (๐ดโ†‘๐‘ง) โˆˆ ๐น) โ†” (๐ด โˆˆ ๐น โ†’ (๐ดโ†‘1) โˆˆ ๐น)))
5 oveq2 5883 . . . . . . 7 (๐‘ง = ๐‘ค โ†’ (๐ดโ†‘๐‘ง) = (๐ดโ†‘๐‘ค))
65eleq1d 2246 . . . . . 6 (๐‘ง = ๐‘ค โ†’ ((๐ดโ†‘๐‘ง) โˆˆ ๐น โ†” (๐ดโ†‘๐‘ค) โˆˆ ๐น))
76imbi2d 230 . . . . 5 (๐‘ง = ๐‘ค โ†’ ((๐ด โˆˆ ๐น โ†’ (๐ดโ†‘๐‘ง) โˆˆ ๐น) โ†” (๐ด โˆˆ ๐น โ†’ (๐ดโ†‘๐‘ค) โˆˆ ๐น)))
8 oveq2 5883 . . . . . . 7 (๐‘ง = (๐‘ค + 1) โ†’ (๐ดโ†‘๐‘ง) = (๐ดโ†‘(๐‘ค + 1)))
98eleq1d 2246 . . . . . 6 (๐‘ง = (๐‘ค + 1) โ†’ ((๐ดโ†‘๐‘ง) โˆˆ ๐น โ†” (๐ดโ†‘(๐‘ค + 1)) โˆˆ ๐น))
109imbi2d 230 . . . . 5 (๐‘ง = (๐‘ค + 1) โ†’ ((๐ด โˆˆ ๐น โ†’ (๐ดโ†‘๐‘ง) โˆˆ ๐น) โ†” (๐ด โˆˆ ๐น โ†’ (๐ดโ†‘(๐‘ค + 1)) โˆˆ ๐น)))
11 oveq2 5883 . . . . . . 7 (๐‘ง = ๐ต โ†’ (๐ดโ†‘๐‘ง) = (๐ดโ†‘๐ต))
1211eleq1d 2246 . . . . . 6 (๐‘ง = ๐ต โ†’ ((๐ดโ†‘๐‘ง) โˆˆ ๐น โ†” (๐ดโ†‘๐ต) โˆˆ ๐น))
1312imbi2d 230 . . . . 5 (๐‘ง = ๐ต โ†’ ((๐ด โˆˆ ๐น โ†’ (๐ดโ†‘๐‘ง) โˆˆ ๐น) โ†” (๐ด โˆˆ ๐น โ†’ (๐ดโ†‘๐ต) โˆˆ ๐น)))
14 expcllem.1 . . . . . . . . 9 ๐น โŠ† โ„‚
1514sseli 3152 . . . . . . . 8 (๐ด โˆˆ ๐น โ†’ ๐ด โˆˆ โ„‚)
16 exp1 10526 . . . . . . . 8 (๐ด โˆˆ โ„‚ โ†’ (๐ดโ†‘1) = ๐ด)
1715, 16syl 14 . . . . . . 7 (๐ด โˆˆ ๐น โ†’ (๐ดโ†‘1) = ๐ด)
1817eleq1d 2246 . . . . . 6 (๐ด โˆˆ ๐น โ†’ ((๐ดโ†‘1) โˆˆ ๐น โ†” ๐ด โˆˆ ๐น))
1918ibir 177 . . . . 5 (๐ด โˆˆ ๐น โ†’ (๐ดโ†‘1) โˆˆ ๐น)
20 expcllem.2 . . . . . . . . . . . 12 ((๐‘ฅ โˆˆ ๐น โˆง ๐‘ฆ โˆˆ ๐น) โ†’ (๐‘ฅ ยท ๐‘ฆ) โˆˆ ๐น)
2120caovcl 6029 . . . . . . . . . . 11 (((๐ดโ†‘๐‘ค) โˆˆ ๐น โˆง ๐ด โˆˆ ๐น) โ†’ ((๐ดโ†‘๐‘ค) ยท ๐ด) โˆˆ ๐น)
2221ancoms 268 . . . . . . . . . 10 ((๐ด โˆˆ ๐น โˆง (๐ดโ†‘๐‘ค) โˆˆ ๐น) โ†’ ((๐ดโ†‘๐‘ค) ยท ๐ด) โˆˆ ๐น)
2322adantlr 477 . . . . . . . . 9 (((๐ด โˆˆ ๐น โˆง ๐‘ค โˆˆ โ„•) โˆง (๐ดโ†‘๐‘ค) โˆˆ ๐น) โ†’ ((๐ดโ†‘๐‘ค) ยท ๐ด) โˆˆ ๐น)
24 nnnn0 9183 . . . . . . . . . . . 12 (๐‘ค โˆˆ โ„• โ†’ ๐‘ค โˆˆ โ„•0)
25 expp1 10527 . . . . . . . . . . . 12 ((๐ด โˆˆ โ„‚ โˆง ๐‘ค โˆˆ โ„•0) โ†’ (๐ดโ†‘(๐‘ค + 1)) = ((๐ดโ†‘๐‘ค) ยท ๐ด))
2615, 24, 25syl2an 289 . . . . . . . . . . 11 ((๐ด โˆˆ ๐น โˆง ๐‘ค โˆˆ โ„•) โ†’ (๐ดโ†‘(๐‘ค + 1)) = ((๐ดโ†‘๐‘ค) ยท ๐ด))
2726eleq1d 2246 . . . . . . . . . 10 ((๐ด โˆˆ ๐น โˆง ๐‘ค โˆˆ โ„•) โ†’ ((๐ดโ†‘(๐‘ค + 1)) โˆˆ ๐น โ†” ((๐ดโ†‘๐‘ค) ยท ๐ด) โˆˆ ๐น))
2827adantr 276 . . . . . . . . 9 (((๐ด โˆˆ ๐น โˆง ๐‘ค โˆˆ โ„•) โˆง (๐ดโ†‘๐‘ค) โˆˆ ๐น) โ†’ ((๐ดโ†‘(๐‘ค + 1)) โˆˆ ๐น โ†” ((๐ดโ†‘๐‘ค) ยท ๐ด) โˆˆ ๐น))
2923, 28mpbird 167 . . . . . . . 8 (((๐ด โˆˆ ๐น โˆง ๐‘ค โˆˆ โ„•) โˆง (๐ดโ†‘๐‘ค) โˆˆ ๐น) โ†’ (๐ดโ†‘(๐‘ค + 1)) โˆˆ ๐น)
3029exp31 364 . . . . . . 7 (๐ด โˆˆ ๐น โ†’ (๐‘ค โˆˆ โ„• โ†’ ((๐ดโ†‘๐‘ค) โˆˆ ๐น โ†’ (๐ดโ†‘(๐‘ค + 1)) โˆˆ ๐น)))
3130com12 30 . . . . . 6 (๐‘ค โˆˆ โ„• โ†’ (๐ด โˆˆ ๐น โ†’ ((๐ดโ†‘๐‘ค) โˆˆ ๐น โ†’ (๐ดโ†‘(๐‘ค + 1)) โˆˆ ๐น)))
3231a2d 26 . . . . 5 (๐‘ค โˆˆ โ„• โ†’ ((๐ด โˆˆ ๐น โ†’ (๐ดโ†‘๐‘ค) โˆˆ ๐น) โ†’ (๐ด โˆˆ ๐น โ†’ (๐ดโ†‘(๐‘ค + 1)) โˆˆ ๐น)))
334, 7, 10, 13, 19, 32nnind 8935 . . . 4 (๐ต โˆˆ โ„• โ†’ (๐ด โˆˆ ๐น โ†’ (๐ดโ†‘๐ต) โˆˆ ๐น))
3433impcom 125 . . 3 ((๐ด โˆˆ ๐น โˆง ๐ต โˆˆ โ„•) โ†’ (๐ดโ†‘๐ต) โˆˆ ๐น)
35 oveq2 5883 . . . . 5 (๐ต = 0 โ†’ (๐ดโ†‘๐ต) = (๐ดโ†‘0))
36 exp0 10524 . . . . . 6 (๐ด โˆˆ โ„‚ โ†’ (๐ดโ†‘0) = 1)
3715, 36syl 14 . . . . 5 (๐ด โˆˆ ๐น โ†’ (๐ดโ†‘0) = 1)
3835, 37sylan9eqr 2232 . . . 4 ((๐ด โˆˆ ๐น โˆง ๐ต = 0) โ†’ (๐ดโ†‘๐ต) = 1)
39 expcllem.3 . . . 4 1 โˆˆ ๐น
4038, 39eqeltrdi 2268 . . 3 ((๐ด โˆˆ ๐น โˆง ๐ต = 0) โ†’ (๐ดโ†‘๐ต) โˆˆ ๐น)
4134, 40jaodan 797 . 2 ((๐ด โˆˆ ๐น โˆง (๐ต โˆˆ โ„• โˆจ ๐ต = 0)) โ†’ (๐ดโ†‘๐ต) โˆˆ ๐น)
421, 41sylan2b 287 1 ((๐ด โˆˆ ๐น โˆง ๐ต โˆˆ โ„•0) โ†’ (๐ดโ†‘๐ต) โˆˆ ๐น)
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โ†” wb 105   โˆจ wo 708   = wceq 1353   โˆˆ wcel 2148   โŠ† wss 3130  (class class class)co 5875  โ„‚cc 7809  0cc0 7811  1c1 7812   + caddc 7814   ยท cmul 7816  โ„•cn 8919  โ„•0cn0 9176  โ†‘cexp 10519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-n0 9177  df-z 9254  df-uz 9529  df-seqfrec 10446  df-exp 10520
This theorem is referenced by:  expcl2lemap  10532  nnexpcl  10533  nn0expcl  10534  zexpcl  10535  qexpcl  10536  reexpcl  10537  expcl  10538  expge0  10556  expge1  10557  lgsfcl2  14410
  Copyright terms: Public domain W3C validator