Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > expcllem | GIF version |
Description: Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005.) |
Ref | Expression |
---|---|
expcllem.1 | ⊢ 𝐹 ⊆ ℂ |
expcllem.2 | ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 · 𝑦) ∈ 𝐹) |
expcllem.3 | ⊢ 1 ∈ 𝐹 |
Ref | Expression |
---|---|
expcllem | ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝐵) ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 9137 | . 2 ⊢ (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) | |
2 | oveq2 5861 | . . . . . . 7 ⊢ (𝑧 = 1 → (𝐴↑𝑧) = (𝐴↑1)) | |
3 | 2 | eleq1d 2239 | . . . . . 6 ⊢ (𝑧 = 1 → ((𝐴↑𝑧) ∈ 𝐹 ↔ (𝐴↑1) ∈ 𝐹)) |
4 | 3 | imbi2d 229 | . . . . 5 ⊢ (𝑧 = 1 → ((𝐴 ∈ 𝐹 → (𝐴↑𝑧) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑1) ∈ 𝐹))) |
5 | oveq2 5861 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (𝐴↑𝑧) = (𝐴↑𝑤)) | |
6 | 5 | eleq1d 2239 | . . . . . 6 ⊢ (𝑧 = 𝑤 → ((𝐴↑𝑧) ∈ 𝐹 ↔ (𝐴↑𝑤) ∈ 𝐹)) |
7 | 6 | imbi2d 229 | . . . . 5 ⊢ (𝑧 = 𝑤 → ((𝐴 ∈ 𝐹 → (𝐴↑𝑧) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑𝑤) ∈ 𝐹))) |
8 | oveq2 5861 | . . . . . . 7 ⊢ (𝑧 = (𝑤 + 1) → (𝐴↑𝑧) = (𝐴↑(𝑤 + 1))) | |
9 | 8 | eleq1d 2239 | . . . . . 6 ⊢ (𝑧 = (𝑤 + 1) → ((𝐴↑𝑧) ∈ 𝐹 ↔ (𝐴↑(𝑤 + 1)) ∈ 𝐹)) |
10 | 9 | imbi2d 229 | . . . . 5 ⊢ (𝑧 = (𝑤 + 1) → ((𝐴 ∈ 𝐹 → (𝐴↑𝑧) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹))) |
11 | oveq2 5861 | . . . . . . 7 ⊢ (𝑧 = 𝐵 → (𝐴↑𝑧) = (𝐴↑𝐵)) | |
12 | 11 | eleq1d 2239 | . . . . . 6 ⊢ (𝑧 = 𝐵 → ((𝐴↑𝑧) ∈ 𝐹 ↔ (𝐴↑𝐵) ∈ 𝐹)) |
13 | 12 | imbi2d 229 | . . . . 5 ⊢ (𝑧 = 𝐵 → ((𝐴 ∈ 𝐹 → (𝐴↑𝑧) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑𝐵) ∈ 𝐹))) |
14 | expcllem.1 | . . . . . . . . 9 ⊢ 𝐹 ⊆ ℂ | |
15 | 14 | sseli 3143 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝐹 → 𝐴 ∈ ℂ) |
16 | exp1 10482 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
17 | 15, 16 | syl 14 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐹 → (𝐴↑1) = 𝐴) |
18 | 17 | eleq1d 2239 | . . . . . 6 ⊢ (𝐴 ∈ 𝐹 → ((𝐴↑1) ∈ 𝐹 ↔ 𝐴 ∈ 𝐹)) |
19 | 18 | ibir 176 | . . . . 5 ⊢ (𝐴 ∈ 𝐹 → (𝐴↑1) ∈ 𝐹) |
20 | expcllem.2 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 · 𝑦) ∈ 𝐹) | |
21 | 20 | caovcl 6007 | . . . . . . . . . . 11 ⊢ (((𝐴↑𝑤) ∈ 𝐹 ∧ 𝐴 ∈ 𝐹) → ((𝐴↑𝑤) · 𝐴) ∈ 𝐹) |
22 | 21 | ancoms 266 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ 𝐹 ∧ (𝐴↑𝑤) ∈ 𝐹) → ((𝐴↑𝑤) · 𝐴) ∈ 𝐹) |
23 | 22 | adantlr 474 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ) ∧ (𝐴↑𝑤) ∈ 𝐹) → ((𝐴↑𝑤) · 𝐴) ∈ 𝐹) |
24 | nnnn0 9142 | . . . . . . . . . . . 12 ⊢ (𝑤 ∈ ℕ → 𝑤 ∈ ℕ0) | |
25 | expp1 10483 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℕ0) → (𝐴↑(𝑤 + 1)) = ((𝐴↑𝑤) · 𝐴)) | |
26 | 15, 24, 25 | syl2an 287 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ) → (𝐴↑(𝑤 + 1)) = ((𝐴↑𝑤) · 𝐴)) |
27 | 26 | eleq1d 2239 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ) → ((𝐴↑(𝑤 + 1)) ∈ 𝐹 ↔ ((𝐴↑𝑤) · 𝐴) ∈ 𝐹)) |
28 | 27 | adantr 274 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ) ∧ (𝐴↑𝑤) ∈ 𝐹) → ((𝐴↑(𝑤 + 1)) ∈ 𝐹 ↔ ((𝐴↑𝑤) · 𝐴) ∈ 𝐹)) |
29 | 23, 28 | mpbird 166 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ) ∧ (𝐴↑𝑤) ∈ 𝐹) → (𝐴↑(𝑤 + 1)) ∈ 𝐹) |
30 | 29 | exp31 362 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐹 → (𝑤 ∈ ℕ → ((𝐴↑𝑤) ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹))) |
31 | 30 | com12 30 | . . . . . 6 ⊢ (𝑤 ∈ ℕ → (𝐴 ∈ 𝐹 → ((𝐴↑𝑤) ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹))) |
32 | 31 | a2d 26 | . . . . 5 ⊢ (𝑤 ∈ ℕ → ((𝐴 ∈ 𝐹 → (𝐴↑𝑤) ∈ 𝐹) → (𝐴 ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹))) |
33 | 4, 7, 10, 13, 19, 32 | nnind 8894 | . . . 4 ⊢ (𝐵 ∈ ℕ → (𝐴 ∈ 𝐹 → (𝐴↑𝐵) ∈ 𝐹)) |
34 | 33 | impcom 124 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ ℕ) → (𝐴↑𝐵) ∈ 𝐹) |
35 | oveq2 5861 | . . . . 5 ⊢ (𝐵 = 0 → (𝐴↑𝐵) = (𝐴↑0)) | |
36 | exp0 10480 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | |
37 | 15, 36 | syl 14 | . . . . 5 ⊢ (𝐴 ∈ 𝐹 → (𝐴↑0) = 1) |
38 | 35, 37 | sylan9eqr 2225 | . . . 4 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 = 0) → (𝐴↑𝐵) = 1) |
39 | expcllem.3 | . . . 4 ⊢ 1 ∈ 𝐹 | |
40 | 38, 39 | eqeltrdi 2261 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 = 0) → (𝐴↑𝐵) ∈ 𝐹) |
41 | 34, 40 | jaodan 792 | . 2 ⊢ ((𝐴 ∈ 𝐹 ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝐴↑𝐵) ∈ 𝐹) |
42 | 1, 41 | sylan2b 285 | 1 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝐵) ∈ 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 = wceq 1348 ∈ wcel 2141 ⊆ wss 3121 (class class class)co 5853 ℂcc 7772 0cc0 7774 1c1 7775 + caddc 7777 · cmul 7779 ℕcn 8878 ℕ0cn0 9135 ↑cexp 10475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-seqfrec 10402 df-exp 10476 |
This theorem is referenced by: expcl2lemap 10488 nnexpcl 10489 nn0expcl 10490 zexpcl 10491 qexpcl 10492 reexpcl 10493 expcl 10494 expge0 10512 expge1 10513 lgsfcl2 13701 |
Copyright terms: Public domain | W3C validator |