| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expcllem | GIF version | ||
| Description: Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005.) |
| Ref | Expression |
|---|---|
| expcllem.1 | ⊢ 𝐹 ⊆ ℂ |
| expcllem.2 | ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 · 𝑦) ∈ 𝐹) |
| expcllem.3 | ⊢ 1 ∈ 𝐹 |
| Ref | Expression |
|---|---|
| expcllem | ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝐵) ∈ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9339 | . 2 ⊢ (𝐵 ∈ ℕ0 ↔ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) | |
| 2 | oveq2 5982 | . . . . . . 7 ⊢ (𝑧 = 1 → (𝐴↑𝑧) = (𝐴↑1)) | |
| 3 | 2 | eleq1d 2278 | . . . . . 6 ⊢ (𝑧 = 1 → ((𝐴↑𝑧) ∈ 𝐹 ↔ (𝐴↑1) ∈ 𝐹)) |
| 4 | 3 | imbi2d 230 | . . . . 5 ⊢ (𝑧 = 1 → ((𝐴 ∈ 𝐹 → (𝐴↑𝑧) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑1) ∈ 𝐹))) |
| 5 | oveq2 5982 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (𝐴↑𝑧) = (𝐴↑𝑤)) | |
| 6 | 5 | eleq1d 2278 | . . . . . 6 ⊢ (𝑧 = 𝑤 → ((𝐴↑𝑧) ∈ 𝐹 ↔ (𝐴↑𝑤) ∈ 𝐹)) |
| 7 | 6 | imbi2d 230 | . . . . 5 ⊢ (𝑧 = 𝑤 → ((𝐴 ∈ 𝐹 → (𝐴↑𝑧) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑𝑤) ∈ 𝐹))) |
| 8 | oveq2 5982 | . . . . . . 7 ⊢ (𝑧 = (𝑤 + 1) → (𝐴↑𝑧) = (𝐴↑(𝑤 + 1))) | |
| 9 | 8 | eleq1d 2278 | . . . . . 6 ⊢ (𝑧 = (𝑤 + 1) → ((𝐴↑𝑧) ∈ 𝐹 ↔ (𝐴↑(𝑤 + 1)) ∈ 𝐹)) |
| 10 | 9 | imbi2d 230 | . . . . 5 ⊢ (𝑧 = (𝑤 + 1) → ((𝐴 ∈ 𝐹 → (𝐴↑𝑧) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹))) |
| 11 | oveq2 5982 | . . . . . . 7 ⊢ (𝑧 = 𝐵 → (𝐴↑𝑧) = (𝐴↑𝐵)) | |
| 12 | 11 | eleq1d 2278 | . . . . . 6 ⊢ (𝑧 = 𝐵 → ((𝐴↑𝑧) ∈ 𝐹 ↔ (𝐴↑𝐵) ∈ 𝐹)) |
| 13 | 12 | imbi2d 230 | . . . . 5 ⊢ (𝑧 = 𝐵 → ((𝐴 ∈ 𝐹 → (𝐴↑𝑧) ∈ 𝐹) ↔ (𝐴 ∈ 𝐹 → (𝐴↑𝐵) ∈ 𝐹))) |
| 14 | expcllem.1 | . . . . . . . . 9 ⊢ 𝐹 ⊆ ℂ | |
| 15 | 14 | sseli 3200 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝐹 → 𝐴 ∈ ℂ) |
| 16 | exp1 10734 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) | |
| 17 | 15, 16 | syl 14 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐹 → (𝐴↑1) = 𝐴) |
| 18 | 17 | eleq1d 2278 | . . . . . 6 ⊢ (𝐴 ∈ 𝐹 → ((𝐴↑1) ∈ 𝐹 ↔ 𝐴 ∈ 𝐹)) |
| 19 | 18 | ibir 177 | . . . . 5 ⊢ (𝐴 ∈ 𝐹 → (𝐴↑1) ∈ 𝐹) |
| 20 | expcllem.2 | . . . . . . . . . . . 12 ⊢ ((𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹) → (𝑥 · 𝑦) ∈ 𝐹) | |
| 21 | 20 | caovcl 6131 | . . . . . . . . . . 11 ⊢ (((𝐴↑𝑤) ∈ 𝐹 ∧ 𝐴 ∈ 𝐹) → ((𝐴↑𝑤) · 𝐴) ∈ 𝐹) |
| 22 | 21 | ancoms 268 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ 𝐹 ∧ (𝐴↑𝑤) ∈ 𝐹) → ((𝐴↑𝑤) · 𝐴) ∈ 𝐹) |
| 23 | 22 | adantlr 477 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ) ∧ (𝐴↑𝑤) ∈ 𝐹) → ((𝐴↑𝑤) · 𝐴) ∈ 𝐹) |
| 24 | nnnn0 9344 | . . . . . . . . . . . 12 ⊢ (𝑤 ∈ ℕ → 𝑤 ∈ ℕ0) | |
| 25 | expp1 10735 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℂ ∧ 𝑤 ∈ ℕ0) → (𝐴↑(𝑤 + 1)) = ((𝐴↑𝑤) · 𝐴)) | |
| 26 | 15, 24, 25 | syl2an 289 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ) → (𝐴↑(𝑤 + 1)) = ((𝐴↑𝑤) · 𝐴)) |
| 27 | 26 | eleq1d 2278 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ) → ((𝐴↑(𝑤 + 1)) ∈ 𝐹 ↔ ((𝐴↑𝑤) · 𝐴) ∈ 𝐹)) |
| 28 | 27 | adantr 276 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ) ∧ (𝐴↑𝑤) ∈ 𝐹) → ((𝐴↑(𝑤 + 1)) ∈ 𝐹 ↔ ((𝐴↑𝑤) · 𝐴) ∈ 𝐹)) |
| 29 | 23, 28 | mpbird 167 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝐹 ∧ 𝑤 ∈ ℕ) ∧ (𝐴↑𝑤) ∈ 𝐹) → (𝐴↑(𝑤 + 1)) ∈ 𝐹) |
| 30 | 29 | exp31 364 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐹 → (𝑤 ∈ ℕ → ((𝐴↑𝑤) ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹))) |
| 31 | 30 | com12 30 | . . . . . 6 ⊢ (𝑤 ∈ ℕ → (𝐴 ∈ 𝐹 → ((𝐴↑𝑤) ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹))) |
| 32 | 31 | a2d 26 | . . . . 5 ⊢ (𝑤 ∈ ℕ → ((𝐴 ∈ 𝐹 → (𝐴↑𝑤) ∈ 𝐹) → (𝐴 ∈ 𝐹 → (𝐴↑(𝑤 + 1)) ∈ 𝐹))) |
| 33 | 4, 7, 10, 13, 19, 32 | nnind 9094 | . . . 4 ⊢ (𝐵 ∈ ℕ → (𝐴 ∈ 𝐹 → (𝐴↑𝐵) ∈ 𝐹)) |
| 34 | 33 | impcom 125 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ ℕ) → (𝐴↑𝐵) ∈ 𝐹) |
| 35 | oveq2 5982 | . . . . 5 ⊢ (𝐵 = 0 → (𝐴↑𝐵) = (𝐴↑0)) | |
| 36 | exp0 10732 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴↑0) = 1) | |
| 37 | 15, 36 | syl 14 | . . . . 5 ⊢ (𝐴 ∈ 𝐹 → (𝐴↑0) = 1) |
| 38 | 35, 37 | sylan9eqr 2264 | . . . 4 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 = 0) → (𝐴↑𝐵) = 1) |
| 39 | expcllem.3 | . . . 4 ⊢ 1 ∈ 𝐹 | |
| 40 | 38, 39 | eqeltrdi 2300 | . . 3 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 = 0) → (𝐴↑𝐵) ∈ 𝐹) |
| 41 | 34, 40 | jaodan 801 | . 2 ⊢ ((𝐴 ∈ 𝐹 ∧ (𝐵 ∈ ℕ ∨ 𝐵 = 0)) → (𝐴↑𝐵) ∈ 𝐹) |
| 42 | 1, 41 | sylan2b 287 | 1 ⊢ ((𝐴 ∈ 𝐹 ∧ 𝐵 ∈ ℕ0) → (𝐴↑𝐵) ∈ 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 712 = wceq 1375 ∈ wcel 2180 ⊆ wss 3177 (class class class)co 5974 ℂcc 7965 0cc0 7967 1c1 7968 + caddc 7970 · cmul 7972 ℕcn 9078 ℕ0cn0 9337 ↑cexp 10727 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-n0 9338 df-z 9415 df-uz 9691 df-seqfrec 10637 df-exp 10728 |
| This theorem is referenced by: expcl2lemap 10740 nnexpcl 10741 nn0expcl 10742 zexpcl 10743 qexpcl 10744 reexpcl 10745 expcl 10746 expge0 10764 expge1 10765 lgsfcl2 15650 |
| Copyright terms: Public domain | W3C validator |