ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnacl GIF version

Theorem nnacl 6344
Description: Closure of addition of natural numbers. Proposition 8.9 of [TakeutiZaring] p. 59. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnacl ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω)

Proof of Theorem nnacl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5750 . . . . 5 (𝑥 = 𝐵 → (𝐴 +o 𝑥) = (𝐴 +o 𝐵))
21eleq1d 2186 . . . 4 (𝑥 = 𝐵 → ((𝐴 +o 𝑥) ∈ ω ↔ (𝐴 +o 𝐵) ∈ ω))
32imbi2d 229 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴 +o 𝑥) ∈ ω) ↔ (𝐴 ∈ ω → (𝐴 +o 𝐵) ∈ ω)))
4 oveq2 5750 . . . . 5 (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅))
54eleq1d 2186 . . . 4 (𝑥 = ∅ → ((𝐴 +o 𝑥) ∈ ω ↔ (𝐴 +o ∅) ∈ ω))
6 oveq2 5750 . . . . 5 (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦))
76eleq1d 2186 . . . 4 (𝑥 = 𝑦 → ((𝐴 +o 𝑥) ∈ ω ↔ (𝐴 +o 𝑦) ∈ ω))
8 oveq2 5750 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦))
98eleq1d 2186 . . . 4 (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) ∈ ω ↔ (𝐴 +o suc 𝑦) ∈ ω))
10 nna0 6338 . . . . . 6 (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴)
1110eleq1d 2186 . . . . 5 (𝐴 ∈ ω → ((𝐴 +o ∅) ∈ ω ↔ 𝐴 ∈ ω))
1211ibir 176 . . . 4 (𝐴 ∈ ω → (𝐴 +o ∅) ∈ ω)
13 peano2 4479 . . . . . 6 ((𝐴 +o 𝑦) ∈ ω → suc (𝐴 +o 𝑦) ∈ ω)
14 nnasuc 6340 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
1514eleq1d 2186 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +o suc 𝑦) ∈ ω ↔ suc (𝐴 +o 𝑦) ∈ ω))
1613, 15syl5ibr 155 . . . . 5 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +o 𝑦) ∈ ω → (𝐴 +o suc 𝑦) ∈ ω))
1716expcom 115 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴 +o 𝑦) ∈ ω → (𝐴 +o suc 𝑦) ∈ ω)))
185, 7, 9, 12, 17finds2 4485 . . 3 (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴 +o 𝑥) ∈ ω))
193, 18vtoclga 2726 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴 +o 𝐵) ∈ ω))
2019impcom 124 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) ∈ ω)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1316  wcel 1465  c0 3333  suc csuc 4257  ωcom 4474  (class class class)co 5742   +o coa 6278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-oadd 6285
This theorem is referenced by:  nnmcl  6345  nnacli  6346  nnaass  6349  nndi  6350  nndir  6354  nnaordi  6372  nnaord  6373  nnaword  6375  addclpi  7103  nnppipi  7119  archnqq  7193  addcmpblnq0  7219  addclnq0  7227  nnanq0  7234  distrnq0  7235  addassnq0lemcl  7237  prarloclemlt  7269  prarloclemlo  7270  prarloclem3  7273  omgadd  10516  hashunlem  10518  hashun  10519
  Copyright terms: Public domain W3C validator