ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fac1 GIF version

Theorem fac1 10872
Description: The factorial of 1. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
fac1 (!‘1) = 1

Proof of Theorem fac1
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn 9046 . . 3 1 ∈ ℕ
2 facnn 10870 . . 3 (1 ∈ ℕ → (!‘1) = (seq1( · , I )‘1))
31, 2ax-mp 5 . 2 (!‘1) = (seq1( · , I )‘1)
4 1zzd 9398 . . . 4 (⊤ → 1 ∈ ℤ)
5 fvi 5635 . . . . . . . 8 (𝑓 ∈ (ℤ‘1) → ( I ‘𝑓) = 𝑓)
65eleq1d 2273 . . . . . . 7 (𝑓 ∈ (ℤ‘1) → (( I ‘𝑓) ∈ (ℤ‘1) ↔ 𝑓 ∈ (ℤ‘1)))
76ibir 177 . . . . . 6 (𝑓 ∈ (ℤ‘1) → ( I ‘𝑓) ∈ (ℤ‘1))
8 eluzelcn 9658 . . . . . 6 (( I ‘𝑓) ∈ (ℤ‘1) → ( I ‘𝑓) ∈ ℂ)
97, 8syl 14 . . . . 5 (𝑓 ∈ (ℤ‘1) → ( I ‘𝑓) ∈ ℂ)
109adantl 277 . . . 4 ((⊤ ∧ 𝑓 ∈ (ℤ‘1)) → ( I ‘𝑓) ∈ ℂ)
11 mulcl 8051 . . . . 5 ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ) → (𝑓 · 𝑔) ∈ ℂ)
1211adantl 277 . . . 4 ((⊤ ∧ (𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ)) → (𝑓 · 𝑔) ∈ ℂ)
134, 10, 12seq3-1 10605 . . 3 (⊤ → (seq1( · , I )‘1) = ( I ‘1))
1413mptru 1381 . 2 (seq1( · , I )‘1) = ( I ‘1)
15 fvi 5635 . . 3 (1 ∈ ℕ → ( I ‘1) = 1)
161, 15ax-mp 5 . 2 ( I ‘1) = 1
173, 14, 163eqtri 2229 1 (!‘1) = 1
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1372  wtru 1373  wcel 2175   I cid 4334  cfv 5270  (class class class)co 5943  cc 7922  1c1 7925   · cmul 7929  cn 9035  cuz 9647  seqcseq 10590  !cfa 10868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-n0 9295  df-z 9372  df-uz 9648  df-seqfrec 10591  df-fac 10869
This theorem is referenced by:  facp1  10873  fac2  10874  bcn1  10901  fprodfac  11868  ege2le3  11924  ef4p  11947  efgt1p2  11948  efgt1p  11949  dveflem  15140
  Copyright terms: Public domain W3C validator