| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fac1 | GIF version | ||
| Description: The factorial of 1. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| Ref | Expression |
|---|---|
| fac1 | ⊢ (!‘1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9077 | . . 3 ⊢ 1 ∈ ℕ | |
| 2 | facnn 10904 | . . 3 ⊢ (1 ∈ ℕ → (!‘1) = (seq1( · , I )‘1)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (!‘1) = (seq1( · , I )‘1) |
| 4 | 1zzd 9429 | . . . 4 ⊢ (⊤ → 1 ∈ ℤ) | |
| 5 | fvi 5654 | . . . . . . . 8 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) = 𝑓) | |
| 6 | 5 | eleq1d 2275 | . . . . . . 7 ⊢ (𝑓 ∈ (ℤ≥‘1) → (( I ‘𝑓) ∈ (ℤ≥‘1) ↔ 𝑓 ∈ (ℤ≥‘1))) |
| 7 | 6 | ibir 177 | . . . . . 6 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ (ℤ≥‘1)) |
| 8 | eluzelcn 9689 | . . . . . 6 ⊢ (( I ‘𝑓) ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ ℂ) | |
| 9 | 7, 8 | syl 14 | . . . . 5 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ ℂ) |
| 10 | 9 | adantl 277 | . . . 4 ⊢ ((⊤ ∧ 𝑓 ∈ (ℤ≥‘1)) → ( I ‘𝑓) ∈ ℂ) |
| 11 | mulcl 8082 | . . . . 5 ⊢ ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ) → (𝑓 · 𝑔) ∈ ℂ) | |
| 12 | 11 | adantl 277 | . . . 4 ⊢ ((⊤ ∧ (𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ)) → (𝑓 · 𝑔) ∈ ℂ) |
| 13 | 4, 10, 12 | seq3-1 10639 | . . 3 ⊢ (⊤ → (seq1( · , I )‘1) = ( I ‘1)) |
| 14 | 13 | mptru 1382 | . 2 ⊢ (seq1( · , I )‘1) = ( I ‘1) |
| 15 | fvi 5654 | . . 3 ⊢ (1 ∈ ℕ → ( I ‘1) = 1) | |
| 16 | 1, 15 | ax-mp 5 | . 2 ⊢ ( I ‘1) = 1 |
| 17 | 3, 14, 16 | 3eqtri 2231 | 1 ⊢ (!‘1) = 1 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ⊤wtru 1374 ∈ wcel 2177 I cid 4348 ‘cfv 5285 (class class class)co 5962 ℂcc 7953 1c1 7956 · cmul 7960 ℕcn 9066 ℤ≥cuz 9678 seqcseq 10624 !cfa 10902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-0id 8063 ax-rnegex 8064 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-ltadd 8071 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-ilim 4429 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-frec 6495 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-inn 9067 df-n0 9326 df-z 9403 df-uz 9679 df-seqfrec 10625 df-fac 10903 |
| This theorem is referenced by: facp1 10907 fac2 10908 bcn1 10935 fprodfac 12011 ege2le3 12067 ef4p 12090 efgt1p2 12091 efgt1p 12092 dveflem 15283 |
| Copyright terms: Public domain | W3C validator |