Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fac1 | GIF version |
Description: The factorial of 1. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
Ref | Expression |
---|---|
fac1 | ⊢ (!‘1) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 8889 | . . 3 ⊢ 1 ∈ ℕ | |
2 | facnn 10661 | . . 3 ⊢ (1 ∈ ℕ → (!‘1) = (seq1( · , I )‘1)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (!‘1) = (seq1( · , I )‘1) |
4 | 1zzd 9239 | . . . 4 ⊢ (⊤ → 1 ∈ ℤ) | |
5 | fvi 5553 | . . . . . . . 8 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) = 𝑓) | |
6 | 5 | eleq1d 2239 | . . . . . . 7 ⊢ (𝑓 ∈ (ℤ≥‘1) → (( I ‘𝑓) ∈ (ℤ≥‘1) ↔ 𝑓 ∈ (ℤ≥‘1))) |
7 | 6 | ibir 176 | . . . . . 6 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ (ℤ≥‘1)) |
8 | eluzelcn 9498 | . . . . . 6 ⊢ (( I ‘𝑓) ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ ℂ) | |
9 | 7, 8 | syl 14 | . . . . 5 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ ℂ) |
10 | 9 | adantl 275 | . . . 4 ⊢ ((⊤ ∧ 𝑓 ∈ (ℤ≥‘1)) → ( I ‘𝑓) ∈ ℂ) |
11 | mulcl 7901 | . . . . 5 ⊢ ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ) → (𝑓 · 𝑔) ∈ ℂ) | |
12 | 11 | adantl 275 | . . . 4 ⊢ ((⊤ ∧ (𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ)) → (𝑓 · 𝑔) ∈ ℂ) |
13 | 4, 10, 12 | seq3-1 10416 | . . 3 ⊢ (⊤ → (seq1( · , I )‘1) = ( I ‘1)) |
14 | 13 | mptru 1357 | . 2 ⊢ (seq1( · , I )‘1) = ( I ‘1) |
15 | fvi 5553 | . . 3 ⊢ (1 ∈ ℕ → ( I ‘1) = 1) | |
16 | 1, 15 | ax-mp 5 | . 2 ⊢ ( I ‘1) = 1 |
17 | 3, 14, 16 | 3eqtri 2195 | 1 ⊢ (!‘1) = 1 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ⊤wtru 1349 ∈ wcel 2141 I cid 4273 ‘cfv 5198 (class class class)co 5853 ℂcc 7772 1c1 7775 · cmul 7779 ℕcn 8878 ℤ≥cuz 9487 seqcseq 10401 !cfa 10659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-seqfrec 10402 df-fac 10660 |
This theorem is referenced by: facp1 10664 fac2 10665 bcn1 10692 fprodfac 11578 ege2le3 11634 ef4p 11657 efgt1p2 11658 efgt1p 11659 dveflem 13481 |
Copyright terms: Public domain | W3C validator |