| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtri | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 28-Jul-1995.) |
| Ref | Expression |
|---|---|
| sseqtr.1 | ⊢ 𝐴 ⊆ 𝐵 |
| sseqtr.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| sseqtri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtr.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | sseqtr.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 2 | sseq2i 3251 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐶) |
| 4 | 1, 3 | mpbi 145 | 1 ⊢ 𝐴 ⊆ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sseqtrri 3259 eqimssi 3280 abssi 3299 ssun2 3368 inssddif 3445 difdifdirss 3576 ifidss 3618 pwundifss 4376 unixpss 4832 0ima 5088 sbthlem7 7138 0bits 12478 ssnnctlemct 13025 prdsvallem 13313 toponsspwpwg 14704 eltg4i 14737 ntrss2 14803 isopn3 14807 tgioo 15236 dvfvalap 15363 dvcnp2cntop 15381 |
| Copyright terms: Public domain | W3C validator |