ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtri GIF version

Theorem sseqtri 3238
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 28-Jul-1995.)
Hypotheses
Ref Expression
sseqtr.1 𝐴𝐵
sseqtr.2 𝐵 = 𝐶
Assertion
Ref Expression
sseqtri 𝐴𝐶

Proof of Theorem sseqtri
StepHypRef Expression
1 sseqtr.1 . 2 𝐴𝐵
2 sseqtr.2 . . 3 𝐵 = 𝐶
32sseq2i 3231 . 2 (𝐴𝐵𝐴𝐶)
41, 3mpbi 145 1 𝐴𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1375  wss 3177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-11 1532  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-in 3183  df-ss 3190
This theorem is referenced by:  sseqtrri  3239  eqimssi  3260  abssi  3279  ssun2  3348  inssddif  3425  difdifdirss  3556  ifidss  3598  pwundifss  4353  unixpss  4809  0ima  5064  sbthlem7  7098  0bits  12436  ssnnctlemct  12983  prdsvallem  13271  toponsspwpwg  14661  eltg4i  14694  ntrss2  14760  isopn3  14764  tgioo  15193  dvfvalap  15320  dvcnp2cntop  15338
  Copyright terms: Public domain W3C validator