| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtri | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 28-Jul-1995.) |
| Ref | Expression |
|---|---|
| sseqtr.1 | ⊢ 𝐴 ⊆ 𝐵 |
| sseqtr.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| sseqtri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtr.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | sseqtr.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 2 | sseq2i 3231 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐶) |
| 4 | 1, 3 | mpbi 145 | 1 ⊢ 𝐴 ⊆ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ⊆ wss 3177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-in 3183 df-ss 3190 |
| This theorem is referenced by: sseqtrri 3239 eqimssi 3260 abssi 3279 ssun2 3348 inssddif 3425 difdifdirss 3556 ifidss 3598 pwundifss 4353 unixpss 4809 0ima 5064 sbthlem7 7098 0bits 12436 ssnnctlemct 12983 prdsvallem 13271 toponsspwpwg 14661 eltg4i 14694 ntrss2 14760 isopn3 14764 tgioo 15193 dvfvalap 15320 dvcnp2cntop 15338 |
| Copyright terms: Public domain | W3C validator |