| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtri | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 28-Jul-1995.) |
| Ref | Expression |
|---|---|
| sseqtr.1 | ⊢ 𝐴 ⊆ 𝐵 |
| sseqtr.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| sseqtri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtr.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | sseqtr.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 2 | sseq2i 3211 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐶) |
| 4 | 1, 3 | mpbi 145 | 1 ⊢ 𝐴 ⊆ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sseqtrri 3219 eqimssi 3240 abssi 3259 ssun2 3328 inssddif 3405 difdifdirss 3536 ifidss 3577 pwundifss 4321 unixpss 4777 0ima 5030 sbthlem7 7038 0bits 12141 ssnnctlemct 12688 prdsvallem 12974 toponsspwpwg 14342 eltg4i 14375 ntrss2 14441 isopn3 14445 tgioo 14874 dvfvalap 15001 dvcnp2cntop 15019 |
| Copyright terms: Public domain | W3C validator |