Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseqtri | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 28-Jul-1995.) |
Ref | Expression |
---|---|
sseqtr.1 | ⊢ 𝐴 ⊆ 𝐵 |
sseqtr.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
sseqtri | ⊢ 𝐴 ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtr.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | sseqtr.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 2 | sseq2i 3169 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐶) |
4 | 1, 3 | mpbi 144 | 1 ⊢ 𝐴 ⊆ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: sseqtrri 3177 eqimssi 3198 abssi 3217 ssun2 3286 inssddif 3363 difdifdirss 3493 ifidss 3535 pwundifss 4263 unixpss 4717 0ima 4964 sbthlem7 6928 ssnnctlemct 12379 toponsspwpwg 12660 eltg4i 12695 ntrss2 12761 isopn3 12765 tgioo 13186 dvfvalap 13290 dvcnp2cntop 13303 |
Copyright terms: Public domain | W3C validator |