ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtri GIF version

Theorem sseqtri 3059
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 28-Jul-1995.)
Hypotheses
Ref Expression
sseqtr.1 𝐴𝐵
sseqtr.2 𝐵 = 𝐶
Assertion
Ref Expression
sseqtri 𝐴𝐶

Proof of Theorem sseqtri
StepHypRef Expression
1 sseqtr.1 . 2 𝐴𝐵
2 sseqtr.2 . . 3 𝐵 = 𝐶
32sseq2i 3052 . 2 (𝐴𝐵𝐴𝐶)
41, 3mpbi 144 1 𝐴𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1290  wss 3000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-11 1443  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-in 3006  df-ss 3013
This theorem is referenced by:  sseqtr4i  3060  eqimssi  3081  abssi  3097  ssun2  3165  inssddif  3241  difdifdirss  3371  pwundifss  4121  unixpss  4564  0ima  4805  sbthlem7  6726  toponsspwpwg  11774  eltg4i  11809  ntrss2  11875  isopn3  11879
  Copyright terms: Public domain W3C validator