ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtri GIF version

Theorem sseqtri 3176
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 28-Jul-1995.)
Hypotheses
Ref Expression
sseqtr.1 𝐴𝐵
sseqtr.2 𝐵 = 𝐶
Assertion
Ref Expression
sseqtri 𝐴𝐶

Proof of Theorem sseqtri
StepHypRef Expression
1 sseqtr.1 . 2 𝐴𝐵
2 sseqtr.2 . . 3 𝐵 = 𝐶
32sseq2i 3169 . 2 (𝐴𝐵𝐴𝐶)
41, 3mpbi 144 1 𝐴𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129
This theorem is referenced by:  sseqtrri  3177  eqimssi  3198  abssi  3217  ssun2  3286  inssddif  3363  difdifdirss  3493  ifidss  3535  pwundifss  4263  unixpss  4717  0ima  4964  sbthlem7  6928  ssnnctlemct  12379  toponsspwpwg  12660  eltg4i  12695  ntrss2  12761  isopn3  12765  tgioo  13186  dvfvalap  13290  dvcnp2cntop  13303
  Copyright terms: Public domain W3C validator