| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtri | GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 28-Jul-1995.) |
| Ref | Expression |
|---|---|
| sseqtr.1 | ⊢ 𝐴 ⊆ 𝐵 |
| sseqtr.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| sseqtri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtr.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | sseqtr.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 2 | sseq2i 3221 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐶) |
| 4 | 1, 3 | mpbi 145 | 1 ⊢ 𝐴 ⊆ 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ⊆ wss 3167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3173 df-ss 3180 |
| This theorem is referenced by: sseqtrri 3229 eqimssi 3250 abssi 3269 ssun2 3338 inssddif 3415 difdifdirss 3546 ifidss 3587 pwundifss 4336 unixpss 4792 0ima 5047 sbthlem7 7072 0bits 12314 ssnnctlemct 12861 prdsvallem 13148 toponsspwpwg 14538 eltg4i 14571 ntrss2 14637 isopn3 14641 tgioo 15070 dvfvalap 15197 dvcnp2cntop 15215 |
| Copyright terms: Public domain | W3C validator |