Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtri GIF version

Theorem sseqtri 3136
 Description: Substitution of equality into a subclass relationship. (Contributed by NM, 28-Jul-1995.)
Hypotheses
Ref Expression
sseqtr.1 𝐴𝐵
sseqtr.2 𝐵 = 𝐶
Assertion
Ref Expression
sseqtri 𝐴𝐶

Proof of Theorem sseqtri
StepHypRef Expression
1 sseqtr.1 . 2 𝐴𝐵
2 sseqtr.2 . . 3 𝐵 = 𝐶
32sseq2i 3129 . 2 (𝐴𝐵𝐴𝐶)
41, 3mpbi 144 1 𝐴𝐶
 Colors of variables: wff set class Syntax hints:   = wceq 1332   ⊆ wss 3076 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-11 1485  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-in 3082  df-ss 3089 This theorem is referenced by:  sseqtrri  3137  eqimssi  3158  abssi  3177  ssun2  3245  inssddif  3322  difdifdirss  3452  pwundifss  4215  unixpss  4660  0ima  4907  sbthlem7  6859  toponsspwpwg  12229  eltg4i  12264  ntrss2  12330  isopn3  12334  tgioo  12755  dvfvalap  12859  dvcnp2cntop  12872
 Copyright terms: Public domain W3C validator