![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseqtri | GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 28-Jul-1995.) |
Ref | Expression |
---|---|
sseqtr.1 | ⊢ 𝐴 ⊆ 𝐵 |
sseqtr.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
sseqtri | ⊢ 𝐴 ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtr.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | sseqtr.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 2 | sseq2i 3052 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐶) |
4 | 1, 3 | mpbi 144 | 1 ⊢ 𝐴 ⊆ 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1290 ⊆ wss 3000 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-11 1443 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-in 3006 df-ss 3013 |
This theorem is referenced by: sseqtr4i 3060 eqimssi 3081 abssi 3097 ssun2 3165 inssddif 3241 difdifdirss 3371 pwundifss 4121 unixpss 4564 0ima 4805 sbthlem7 6726 toponsspwpwg 11774 eltg4i 11809 ntrss2 11875 isopn3 11879 |
Copyright terms: Public domain | W3C validator |