| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpl3 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpl3 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1002 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
| 2 | 1 | adantr 276 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simpll3 1041 simprl3 1047 simp1l3 1095 simp2l3 1101 simp3l3 1107 3anandirs 1361 ifnetruedc 3614 frirrg 4401 fcofo 5860 acexmid 5950 rdgon 6479 oawordi 6562 nnmord 6610 nnmword 6611 fidifsnen 6974 dif1en 6983 ac6sfi 7002 difinfsn 7209 2omotaplemap 7376 enq0tr 7554 distrlem4prl 7704 distrlem4pru 7705 ltaprg 7739 lelttr 8168 ltletr 8169 readdcan 8219 addcan 8259 addcan2 8260 ltadd2 8499 divmulassap 8775 xrlelttr 9935 xrltletr 9936 xaddass 9998 xleadd1a 10002 xlesubadd 10012 icoshftf1o 10120 difelfzle 10263 fzo1fzo0n0 10314 modqmuladdim 10519 modqmuladdnn0 10520 modqm1p1mod0 10527 q2submod 10537 modifeq2int 10538 modqaddmulmod 10543 seq1g 10615 seqp1g 10618 ltexp2a 10743 exple1 10747 expnlbnd2 10817 nn0ltexp2 10861 nn0leexp2 10862 mulsubdivbinom2ap 10863 expcan 10868 fiprsshashgt1 10969 fun2dmnop0 10999 ccatass 11072 fzowrddc 11108 swrdclg 11111 maxleastb 11569 maxltsup 11573 xrltmaxsup 11612 xrmaxltsup 11613 xrmaxaddlem 11615 xrmaxadd 11616 addcn2 11665 mulcn2 11667 isumz 11744 dvdsmodexp 12150 modmulconst 12178 dvdsmod 12217 divalglemex 12277 divalg 12279 gcdass 12380 rplpwr 12392 rppwr 12393 nnwodc 12401 uzwodc 12402 rpmulgcd2 12461 rpdvds 12465 rpexp 12519 znege1 12544 prmdiveq 12602 hashgcdlem 12604 coprimeprodsq 12624 coprimeprodsq2 12625 pythagtriplem3 12634 pcdvdsb 12687 pcgcd1 12695 dvdsprmpweq 12702 pcbc 12718 ctinf 12845 nninfdc 12868 isnsgrp 13282 issubmnd 13318 mulgnn0p1 13513 mulgnnsubcl 13514 mulgneg 13520 mulgdirlem 13533 nmzsubg 13590 ghmmulg 13636 ring1eq0 13854 rmodislmod 14157 lspss 14205 2idlcpblrng 14329 neiint 14661 topssnei 14678 cnptopco 14738 cnrest2 14752 cnptoprest 14755 upxp 14788 bldisj 14917 blgt0 14918 bl2in 14919 blss2ps 14922 blss2 14923 xblm 14933 blssps 14943 blss 14944 bdmopn 15020 metcnp2 15029 txmetcnp 15034 cncfmptc 15112 dvcnp2cntop 15215 dvcn 15216 ply1term 15259 dvply1 15281 logdivlti 15397 ltexp2 15457 lgsfvalg 15526 lgsneg 15545 lgsmod 15547 lgsdilem 15548 lgsdirprm 15555 lgsdir 15556 lgsdi 15558 lgsne0 15559 1dom1el 16001 |
| Copyright terms: Public domain | W3C validator |