![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpl3 | GIF version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpl3 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1001 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | adantr 276 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simpll3 1040 simprl3 1046 simp1l3 1094 simp2l3 1100 simp3l3 1106 3anandirs 1359 ifnetruedc 3599 frirrg 4382 fcofo 5828 acexmid 5918 rdgon 6441 oawordi 6524 nnmord 6572 nnmword 6573 fidifsnen 6928 dif1en 6937 ac6sfi 6956 difinfsn 7161 2omotaplemap 7319 enq0tr 7496 distrlem4prl 7646 distrlem4pru 7647 ltaprg 7681 lelttr 8110 ltletr 8111 readdcan 8161 addcan 8201 addcan2 8202 ltadd2 8440 divmulassap 8716 xrlelttr 9875 xrltletr 9876 xaddass 9938 xleadd1a 9942 xlesubadd 9952 icoshftf1o 10060 difelfzle 10203 fzo1fzo0n0 10253 modqmuladdim 10441 modqmuladdnn0 10442 modqm1p1mod0 10449 q2submod 10459 modifeq2int 10460 modqaddmulmod 10465 seq1g 10537 seqp1g 10540 ltexp2a 10665 exple1 10669 expnlbnd2 10739 nn0ltexp2 10783 nn0leexp2 10784 mulsubdivbinom2ap 10785 expcan 10790 fiprsshashgt1 10891 maxleastb 11361 maxltsup 11365 xrltmaxsup 11403 xrmaxltsup 11404 xrmaxaddlem 11406 xrmaxadd 11407 addcn2 11456 mulcn2 11458 isumz 11535 dvdsmodexp 11941 modmulconst 11969 dvdsmod 12007 divalglemex 12066 divalg 12068 gcdass 12155 rplpwr 12167 rppwr 12168 nnwodc 12176 uzwodc 12177 rpmulgcd2 12236 rpdvds 12240 rpexp 12294 znege1 12319 prmdiveq 12377 hashgcdlem 12379 coprimeprodsq 12398 coprimeprodsq2 12399 pythagtriplem3 12408 pcdvdsb 12461 pcgcd1 12469 dvdsprmpweq 12476 pcbc 12492 ctinf 12590 nninfdc 12613 isnsgrp 12992 issubmnd 13026 mulgnn0p1 13206 mulgnnsubcl 13207 mulgneg 13213 mulgdirlem 13226 nmzsubg 13283 ghmmulg 13329 ring1eq0 13547 rmodislmod 13850 lspss 13898 2idlcpblrng 14022 neiint 14324 topssnei 14341 cnptopco 14401 cnrest2 14415 cnptoprest 14418 upxp 14451 bldisj 14580 blgt0 14581 bl2in 14582 blss2ps 14585 blss2 14586 xblm 14596 blssps 14606 blss 14607 bdmopn 14683 metcnp2 14692 txmetcnp 14697 cncfmptc 14775 dvcnp2cntop 14878 dvcn 14879 ply1term 14922 dvply1 14943 logdivlti 15057 ltexp2 15115 lgsfvalg 15162 lgsneg 15181 lgsmod 15183 lgsdilem 15184 lgsdirprm 15191 lgsdir 15192 lgsdi 15194 lgsne0 15195 1dom1el 15553 |
Copyright terms: Public domain | W3C validator |