| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpl3 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpl3 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1001 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
| 2 | 1 | adantr 276 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpll3 1040 simprl3 1046 simp1l3 1094 simp2l3 1100 simp3l3 1106 3anandirs 1359 ifnetruedc 3603 frirrg 4386 fcofo 5834 acexmid 5924 rdgon 6453 oawordi 6536 nnmord 6584 nnmword 6585 fidifsnen 6940 dif1en 6949 ac6sfi 6968 difinfsn 7175 2omotaplemap 7340 enq0tr 7518 distrlem4prl 7668 distrlem4pru 7669 ltaprg 7703 lelttr 8132 ltletr 8133 readdcan 8183 addcan 8223 addcan2 8224 ltadd2 8463 divmulassap 8739 xrlelttr 9898 xrltletr 9899 xaddass 9961 xleadd1a 9965 xlesubadd 9975 icoshftf1o 10083 difelfzle 10226 fzo1fzo0n0 10276 modqmuladdim 10476 modqmuladdnn0 10477 modqm1p1mod0 10484 q2submod 10494 modifeq2int 10495 modqaddmulmod 10500 seq1g 10572 seqp1g 10575 ltexp2a 10700 exple1 10704 expnlbnd2 10774 nn0ltexp2 10818 nn0leexp2 10819 mulsubdivbinom2ap 10820 expcan 10825 fiprsshashgt1 10926 maxleastb 11396 maxltsup 11400 xrltmaxsup 11439 xrmaxltsup 11440 xrmaxaddlem 11442 xrmaxadd 11443 addcn2 11492 mulcn2 11494 isumz 11571 dvdsmodexp 11977 modmulconst 12005 dvdsmod 12044 divalglemex 12104 divalg 12106 gcdass 12207 rplpwr 12219 rppwr 12220 nnwodc 12228 uzwodc 12229 rpmulgcd2 12288 rpdvds 12292 rpexp 12346 znege1 12371 prmdiveq 12429 hashgcdlem 12431 coprimeprodsq 12451 coprimeprodsq2 12452 pythagtriplem3 12461 pcdvdsb 12514 pcgcd1 12522 dvdsprmpweq 12529 pcbc 12545 ctinf 12672 nninfdc 12695 isnsgrp 13108 issubmnd 13144 mulgnn0p1 13339 mulgnnsubcl 13340 mulgneg 13346 mulgdirlem 13359 nmzsubg 13416 ghmmulg 13462 ring1eq0 13680 rmodislmod 13983 lspss 14031 2idlcpblrng 14155 neiint 14465 topssnei 14482 cnptopco 14542 cnrest2 14556 cnptoprest 14559 upxp 14592 bldisj 14721 blgt0 14722 bl2in 14723 blss2ps 14726 blss2 14727 xblm 14737 blssps 14747 blss 14748 bdmopn 14824 metcnp2 14833 txmetcnp 14838 cncfmptc 14916 dvcnp2cntop 15019 dvcn 15020 ply1term 15063 dvply1 15085 logdivlti 15201 ltexp2 15261 lgsfvalg 15330 lgsneg 15349 lgsmod 15351 lgsdilem 15352 lgsdirprm 15359 lgsdir 15360 lgsdi 15362 lgsne0 15363 1dom1el 15721 |
| Copyright terms: Public domain | W3C validator |