Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simpl3 | GIF version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpl3 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 989 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | adantr 274 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: simpll3 1028 simprl3 1034 simp1l3 1082 simp2l3 1088 simp3l3 1094 3anandirs 1338 frirrg 4327 fcofo 5751 acexmid 5840 rdgon 6350 oawordi 6433 nnmord 6481 nnmword 6482 fidifsnen 6832 dif1en 6841 ac6sfi 6860 difinfsn 7061 enq0tr 7371 distrlem4prl 7521 distrlem4pru 7522 ltaprg 7556 lelttr 7983 ltletr 7984 readdcan 8034 addcan 8074 addcan2 8075 ltadd2 8313 divmulassap 8587 xrlelttr 9738 xrltletr 9739 xaddass 9801 xleadd1a 9805 xlesubadd 9815 icoshftf1o 9923 difelfzle 10065 fzo1fzo0n0 10114 modqmuladdim 10298 modqmuladdnn0 10299 modqm1p1mod0 10306 q2submod 10316 modifeq2int 10317 modqaddmulmod 10322 ltexp2a 10503 exple1 10507 expnlbnd2 10576 nn0ltexp2 10619 nn0leexp2 10620 expcan 10625 fiprsshashgt1 10726 maxleastb 11152 maxltsup 11156 xrltmaxsup 11194 xrmaxltsup 11195 xrmaxaddlem 11197 xrmaxadd 11198 addcn2 11247 mulcn2 11249 isumz 11326 dvdsmodexp 11731 modmulconst 11759 dvdsmod 11796 divalglemex 11855 divalg 11857 gcdass 11944 rplpwr 11956 rppwr 11957 nnwodc 11965 uzwodc 11966 rpmulgcd2 12023 rpdvds 12027 rpexp 12081 znege1 12106 prmdiveq 12164 hashgcdlem 12166 coprimeprodsq 12185 coprimeprodsq2 12186 pythagtriplem3 12195 pcdvdsb 12247 pcgcd1 12255 dvdsprmpweq 12262 pcbc 12277 ctinf 12359 nninfdc 12382 neiint 12745 topssnei 12762 cnptopco 12822 cnrest2 12836 cnptoprest 12839 upxp 12872 bldisj 13001 blgt0 13002 bl2in 13003 blss2ps 13006 blss2 13007 xblm 13017 blssps 13027 blss 13028 bdmopn 13104 metcnp2 13113 txmetcnp 13118 cncfmptc 13182 dvcnp2cntop 13263 dvcn 13264 logdivlti 13402 ltexp2 13460 lgsfvalg 13506 lgsneg 13525 lgsmod 13527 lgsdilem 13528 lgsdirprm 13535 lgsdir 13536 lgsdi 13538 lgsne0 13539 |
Copyright terms: Public domain | W3C validator |