![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpl3 | GIF version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpl3 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1001 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | adantr 276 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simpll3 1040 simprl3 1046 simp1l3 1094 simp2l3 1100 simp3l3 1106 3anandirs 1359 ifnetruedc 3598 frirrg 4381 fcofo 5827 acexmid 5917 rdgon 6439 oawordi 6522 nnmord 6570 nnmword 6571 fidifsnen 6926 dif1en 6935 ac6sfi 6954 difinfsn 7159 2omotaplemap 7317 enq0tr 7494 distrlem4prl 7644 distrlem4pru 7645 ltaprg 7679 lelttr 8108 ltletr 8109 readdcan 8159 addcan 8199 addcan2 8200 ltadd2 8438 divmulassap 8714 xrlelttr 9872 xrltletr 9873 xaddass 9935 xleadd1a 9939 xlesubadd 9949 icoshftf1o 10057 difelfzle 10200 fzo1fzo0n0 10250 modqmuladdim 10438 modqmuladdnn0 10439 modqm1p1mod0 10446 q2submod 10456 modifeq2int 10457 modqaddmulmod 10462 seq1g 10534 seqp1g 10537 ltexp2a 10662 exple1 10666 expnlbnd2 10736 nn0ltexp2 10780 nn0leexp2 10781 mulsubdivbinom2ap 10782 expcan 10787 fiprsshashgt1 10888 maxleastb 11358 maxltsup 11362 xrltmaxsup 11400 xrmaxltsup 11401 xrmaxaddlem 11403 xrmaxadd 11404 addcn2 11453 mulcn2 11455 isumz 11532 dvdsmodexp 11938 modmulconst 11966 dvdsmod 12004 divalglemex 12063 divalg 12065 gcdass 12152 rplpwr 12164 rppwr 12165 nnwodc 12173 uzwodc 12174 rpmulgcd2 12233 rpdvds 12237 rpexp 12291 znege1 12316 prmdiveq 12374 hashgcdlem 12376 coprimeprodsq 12395 coprimeprodsq2 12396 pythagtriplem3 12405 pcdvdsb 12458 pcgcd1 12466 dvdsprmpweq 12473 pcbc 12489 ctinf 12587 nninfdc 12610 isnsgrp 12989 issubmnd 13023 mulgnn0p1 13203 mulgnnsubcl 13204 mulgneg 13210 mulgdirlem 13223 nmzsubg 13280 ghmmulg 13326 ring1eq0 13544 rmodislmod 13847 lspss 13895 2idlcpblrng 14019 neiint 14313 topssnei 14330 cnptopco 14390 cnrest2 14404 cnptoprest 14407 upxp 14440 bldisj 14569 blgt0 14570 bl2in 14571 blss2ps 14574 blss2 14575 xblm 14585 blssps 14595 blss 14596 bdmopn 14672 metcnp2 14681 txmetcnp 14686 cncfmptc 14750 dvcnp2cntop 14848 dvcn 14849 ply1term 14889 logdivlti 15016 ltexp2 15074 lgsfvalg 15121 lgsneg 15140 lgsmod 15142 lgsdilem 15143 lgsdirprm 15150 lgsdir 15151 lgsdi 15153 lgsne0 15154 1dom1el 15483 |
Copyright terms: Public domain | W3C validator |