| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > simpl3 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) | 
| Ref | Expression | 
|---|---|
| simpl3 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp3 1001 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
| 2 | 1 | adantr 276 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: simpll3 1040 simprl3 1046 simp1l3 1094 simp2l3 1100 simp3l3 1106 3anandirs 1359 ifnetruedc 3602 frirrg 4385 fcofo 5831 acexmid 5921 rdgon 6444 oawordi 6527 nnmord 6575 nnmword 6576 fidifsnen 6931 dif1en 6940 ac6sfi 6959 difinfsn 7166 2omotaplemap 7324 enq0tr 7501 distrlem4prl 7651 distrlem4pru 7652 ltaprg 7686 lelttr 8115 ltletr 8116 readdcan 8166 addcan 8206 addcan2 8207 ltadd2 8446 divmulassap 8722 xrlelttr 9881 xrltletr 9882 xaddass 9944 xleadd1a 9948 xlesubadd 9958 icoshftf1o 10066 difelfzle 10209 fzo1fzo0n0 10259 modqmuladdim 10459 modqmuladdnn0 10460 modqm1p1mod0 10467 q2submod 10477 modifeq2int 10478 modqaddmulmod 10483 seq1g 10555 seqp1g 10558 ltexp2a 10683 exple1 10687 expnlbnd2 10757 nn0ltexp2 10801 nn0leexp2 10802 mulsubdivbinom2ap 10803 expcan 10808 fiprsshashgt1 10909 maxleastb 11379 maxltsup 11383 xrltmaxsup 11422 xrmaxltsup 11423 xrmaxaddlem 11425 xrmaxadd 11426 addcn2 11475 mulcn2 11477 isumz 11554 dvdsmodexp 11960 modmulconst 11988 dvdsmod 12027 divalglemex 12087 divalg 12089 gcdass 12182 rplpwr 12194 rppwr 12195 nnwodc 12203 uzwodc 12204 rpmulgcd2 12263 rpdvds 12267 rpexp 12321 znege1 12346 prmdiveq 12404 hashgcdlem 12406 coprimeprodsq 12426 coprimeprodsq2 12427 pythagtriplem3 12436 pcdvdsb 12489 pcgcd1 12497 dvdsprmpweq 12504 pcbc 12520 ctinf 12647 nninfdc 12670 isnsgrp 13049 issubmnd 13083 mulgnn0p1 13263 mulgnnsubcl 13264 mulgneg 13270 mulgdirlem 13283 nmzsubg 13340 ghmmulg 13386 ring1eq0 13604 rmodislmod 13907 lspss 13955 2idlcpblrng 14079 neiint 14381 topssnei 14398 cnptopco 14458 cnrest2 14472 cnptoprest 14475 upxp 14508 bldisj 14637 blgt0 14638 bl2in 14639 blss2ps 14642 blss2 14643 xblm 14653 blssps 14663 blss 14664 bdmopn 14740 metcnp2 14749 txmetcnp 14754 cncfmptc 14832 dvcnp2cntop 14935 dvcn 14936 ply1term 14979 dvply1 15001 logdivlti 15117 ltexp2 15177 lgsfvalg 15246 lgsneg 15265 lgsmod 15267 lgsdilem 15268 lgsdirprm 15275 lgsdir 15276 lgsdi 15278 lgsne0 15279 1dom1el 15637 | 
| Copyright terms: Public domain | W3C validator |