Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simpl3 | GIF version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpl3 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 988 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | adantr 274 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 969 |
This theorem is referenced by: simpll3 1027 simprl3 1033 simp1l3 1081 simp2l3 1087 simp3l3 1093 3anandirs 1337 frirrg 4323 fcofo 5747 acexmid 5836 rdgon 6346 oawordi 6429 nnmord 6477 nnmword 6478 fidifsnen 6828 dif1en 6837 ac6sfi 6856 difinfsn 7057 enq0tr 7367 distrlem4prl 7517 distrlem4pru 7518 ltaprg 7552 lelttr 7979 ltletr 7980 readdcan 8030 addcan 8070 addcan2 8071 ltadd2 8309 divmulassap 8583 xrlelttr 9734 xrltletr 9735 xaddass 9797 xleadd1a 9801 xlesubadd 9811 icoshftf1o 9919 difelfzle 10060 fzo1fzo0n0 10109 modqmuladdim 10293 modqmuladdnn0 10294 modqm1p1mod0 10301 q2submod 10311 modifeq2int 10312 modqaddmulmod 10317 ltexp2a 10498 exple1 10502 expnlbnd2 10570 nn0ltexp2 10613 nn0leexp2 10614 expcan 10619 fiprsshashgt1 10720 maxleastb 11146 maxltsup 11150 xrltmaxsup 11188 xrmaxltsup 11189 xrmaxaddlem 11191 xrmaxadd 11192 addcn2 11241 mulcn2 11243 isumz 11320 dvdsmodexp 11725 modmulconst 11753 dvdsmod 11789 divalglemex 11848 divalg 11850 gcdass 11937 rplpwr 11949 rppwr 11950 nnwodc 11958 uzwodc 11959 rpmulgcd2 12016 rpdvds 12020 rpexp 12074 znege1 12099 prmdiveq 12157 hashgcdlem 12159 coprimeprodsq 12178 coprimeprodsq2 12179 pythagtriplem3 12188 pcdvdsb 12240 pcgcd1 12248 dvdsprmpweq 12255 pcbc 12270 ctinf 12326 nninfdc 12349 neiint 12712 topssnei 12729 cnptopco 12789 cnrest2 12803 cnptoprest 12806 upxp 12839 bldisj 12968 blgt0 12969 bl2in 12970 blss2ps 12973 blss2 12974 xblm 12984 blssps 12994 blss 12995 bdmopn 13071 metcnp2 13080 txmetcnp 13085 cncfmptc 13149 dvcnp2cntop 13230 dvcn 13231 logdivlti 13369 ltexp2 13427 |
Copyright terms: Public domain | W3C validator |