| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpl3 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpl3 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1023 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
| 2 | 1 | adantr 276 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simpll3 1062 simprl3 1068 simp1l3 1116 simp2l3 1122 simp3l3 1128 3anandirs 1382 ifnetruedc 3646 frirrg 4441 fcofo 5914 acexmid 6006 rdgon 6538 oawordi 6623 nnmord 6671 nnmword 6672 fidifsnen 7040 dif1en 7049 ac6sfi 7068 difinfsn 7275 2omotaplemap 7451 enq0tr 7629 distrlem4prl 7779 distrlem4pru 7780 ltaprg 7814 lelttr 8243 ltletr 8244 readdcan 8294 addcan 8334 addcan2 8335 ltadd2 8574 divmulassap 8850 xrlelttr 10010 xrltletr 10011 xaddass 10073 xleadd1a 10077 xlesubadd 10087 icoshftf1o 10195 difelfzle 10338 fzo1fzo0n0 10391 modqmuladdim 10597 modqmuladdnn0 10598 modqm1p1mod0 10605 q2submod 10615 modifeq2int 10616 modqaddmulmod 10621 seq1g 10693 seqp1g 10696 ltexp2a 10821 exple1 10825 expnlbnd2 10895 nn0ltexp2 10939 nn0leexp2 10940 mulsubdivbinom2ap 10941 expcan 10946 fiprsshashgt1 11047 fun2dmnop0 11077 ccatass 11151 fzowrddc 11187 swrdclg 11190 ccatopth 11256 pfxccatin12lem2a 11267 pfxccat3 11274 maxleastb 11733 maxltsup 11737 xrltmaxsup 11776 xrmaxltsup 11777 xrmaxaddlem 11779 xrmaxadd 11780 addcn2 11829 mulcn2 11831 isumz 11908 dvdsmodexp 12314 modmulconst 12342 dvdsmod 12381 divalglemex 12441 divalg 12443 gcdass 12544 rplpwr 12556 rppwr 12557 nnwodc 12565 uzwodc 12566 rpmulgcd2 12625 rpdvds 12629 rpexp 12683 znege1 12708 prmdiveq 12766 hashgcdlem 12768 coprimeprodsq 12788 coprimeprodsq2 12789 pythagtriplem3 12798 pcdvdsb 12851 pcgcd1 12859 dvdsprmpweq 12866 pcbc 12882 ctinf 13009 nninfdc 13032 isnsgrp 13447 issubmnd 13483 mulgnn0p1 13678 mulgnnsubcl 13679 mulgneg 13685 mulgdirlem 13698 nmzsubg 13755 ghmmulg 13801 ring1eq0 14019 rmodislmod 14323 lspss 14371 2idlcpblrng 14495 neiint 14827 topssnei 14844 cnptopco 14904 cnrest2 14918 cnptoprest 14921 upxp 14954 bldisj 15083 blgt0 15084 bl2in 15085 blss2ps 15088 blss2 15089 xblm 15099 blssps 15109 blss 15110 bdmopn 15186 metcnp2 15195 txmetcnp 15200 cncfmptc 15278 dvcnp2cntop 15381 dvcn 15382 ply1term 15425 dvply1 15447 logdivlti 15563 ltexp2 15623 lgsfvalg 15692 lgsneg 15711 lgsmod 15713 lgsdilem 15714 lgsdirprm 15721 lgsdir 15722 lgsdi 15724 lgsne0 15725 1dom1el 16378 |
| Copyright terms: Public domain | W3C validator |