| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpl3 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpl3 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1004 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
| 2 | 1 | adantr 276 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 985 |
| This theorem is referenced by: simpll3 1043 simprl3 1049 simp1l3 1097 simp2l3 1103 simp3l3 1109 3anandirs 1363 ifnetruedc 3626 frirrg 4418 fcofo 5881 acexmid 5973 rdgon 6502 oawordi 6585 nnmord 6633 nnmword 6634 fidifsnen 7000 dif1en 7009 ac6sfi 7028 difinfsn 7235 2omotaplemap 7411 enq0tr 7589 distrlem4prl 7739 distrlem4pru 7740 ltaprg 7774 lelttr 8203 ltletr 8204 readdcan 8254 addcan 8294 addcan2 8295 ltadd2 8534 divmulassap 8810 xrlelttr 9970 xrltletr 9971 xaddass 10033 xleadd1a 10037 xlesubadd 10047 icoshftf1o 10155 difelfzle 10298 fzo1fzo0n0 10351 modqmuladdim 10556 modqmuladdnn0 10557 modqm1p1mod0 10564 q2submod 10574 modifeq2int 10575 modqaddmulmod 10580 seq1g 10652 seqp1g 10655 ltexp2a 10780 exple1 10784 expnlbnd2 10854 nn0ltexp2 10898 nn0leexp2 10899 mulsubdivbinom2ap 10900 expcan 10905 fiprsshashgt1 11006 fun2dmnop0 11036 ccatass 11109 fzowrddc 11145 swrdclg 11148 ccatopth 11214 pfxccatin12lem2a 11225 pfxccat3 11232 maxleastb 11691 maxltsup 11695 xrltmaxsup 11734 xrmaxltsup 11735 xrmaxaddlem 11737 xrmaxadd 11738 addcn2 11787 mulcn2 11789 isumz 11866 dvdsmodexp 12272 modmulconst 12300 dvdsmod 12339 divalglemex 12399 divalg 12401 gcdass 12502 rplpwr 12514 rppwr 12515 nnwodc 12523 uzwodc 12524 rpmulgcd2 12583 rpdvds 12587 rpexp 12641 znege1 12666 prmdiveq 12724 hashgcdlem 12726 coprimeprodsq 12746 coprimeprodsq2 12747 pythagtriplem3 12756 pcdvdsb 12809 pcgcd1 12817 dvdsprmpweq 12824 pcbc 12840 ctinf 12967 nninfdc 12990 isnsgrp 13405 issubmnd 13441 mulgnn0p1 13636 mulgnnsubcl 13637 mulgneg 13643 mulgdirlem 13656 nmzsubg 13713 ghmmulg 13759 ring1eq0 13977 rmodislmod 14280 lspss 14328 2idlcpblrng 14452 neiint 14784 topssnei 14801 cnptopco 14861 cnrest2 14875 cnptoprest 14878 upxp 14911 bldisj 15040 blgt0 15041 bl2in 15042 blss2ps 15045 blss2 15046 xblm 15056 blssps 15066 blss 15067 bdmopn 15143 metcnp2 15152 txmetcnp 15157 cncfmptc 15235 dvcnp2cntop 15338 dvcn 15339 ply1term 15382 dvply1 15404 logdivlti 15520 ltexp2 15580 lgsfvalg 15649 lgsneg 15668 lgsmod 15670 lgsdilem 15671 lgsdirprm 15678 lgsdir 15679 lgsdi 15681 lgsne0 15682 1dom1el 16264 |
| Copyright terms: Public domain | W3C validator |