![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpl3 | GIF version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpl3 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1001 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | adantr 276 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simpll3 1040 simprl3 1046 simp1l3 1094 simp2l3 1100 simp3l3 1106 3anandirs 1359 frirrg 4365 fcofo 5801 acexmid 5890 rdgon 6405 oawordi 6488 nnmord 6536 nnmword 6537 fidifsnen 6888 dif1en 6897 ac6sfi 6916 difinfsn 7117 2omotaplemap 7274 enq0tr 7451 distrlem4prl 7601 distrlem4pru 7602 ltaprg 7636 lelttr 8064 ltletr 8065 readdcan 8115 addcan 8155 addcan2 8156 ltadd2 8394 divmulassap 8670 xrlelttr 9824 xrltletr 9825 xaddass 9887 xleadd1a 9891 xlesubadd 9901 icoshftf1o 10009 difelfzle 10152 fzo1fzo0n0 10201 modqmuladdim 10385 modqmuladdnn0 10386 modqm1p1mod0 10393 q2submod 10403 modifeq2int 10404 modqaddmulmod 10409 ltexp2a 10590 exple1 10594 expnlbnd2 10664 nn0ltexp2 10707 nn0leexp2 10708 mulsubdivbinom2ap 10709 expcan 10714 fiprsshashgt1 10815 maxleastb 11241 maxltsup 11245 xrltmaxsup 11283 xrmaxltsup 11284 xrmaxaddlem 11286 xrmaxadd 11287 addcn2 11336 mulcn2 11338 isumz 11415 dvdsmodexp 11820 modmulconst 11848 dvdsmod 11886 divalglemex 11945 divalg 11947 gcdass 12034 rplpwr 12046 rppwr 12047 nnwodc 12055 uzwodc 12056 rpmulgcd2 12113 rpdvds 12117 rpexp 12171 znege1 12196 prmdiveq 12254 hashgcdlem 12256 coprimeprodsq 12275 coprimeprodsq2 12276 pythagtriplem3 12285 pcdvdsb 12337 pcgcd1 12345 dvdsprmpweq 12352 pcbc 12367 ctinf 12449 nninfdc 12472 isnsgrp 12835 issubmnd 12869 mulgnn0p1 13039 mulgnnsubcl 13040 mulgneg 13046 mulgdirlem 13059 nmzsubg 13115 ghmmulg 13156 ring1eq0 13361 rmodislmod 13628 lspss 13676 2idlcpblrng 13799 neiint 14042 topssnei 14059 cnptopco 14119 cnrest2 14133 cnptoprest 14136 upxp 14169 bldisj 14298 blgt0 14299 bl2in 14300 blss2ps 14303 blss2 14304 xblm 14314 blssps 14324 blss 14325 bdmopn 14401 metcnp2 14410 txmetcnp 14415 cncfmptc 14479 dvcnp2cntop 14560 dvcn 14561 logdivlti 14699 ltexp2 14757 lgsfvalg 14803 lgsneg 14822 lgsmod 14824 lgsdilem 14825 lgsdirprm 14832 lgsdir 14833 lgsdi 14835 lgsne0 14836 1dom1el 15140 |
Copyright terms: Public domain | W3C validator |