| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpl3 | GIF version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpl3 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1001 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
| 2 | 1 | adantr 276 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpll3 1040 simprl3 1046 simp1l3 1094 simp2l3 1100 simp3l3 1106 3anandirs 1359 ifnetruedc 3603 frirrg 4386 fcofo 5834 acexmid 5924 rdgon 6453 oawordi 6536 nnmord 6584 nnmword 6585 fidifsnen 6940 dif1en 6949 ac6sfi 6968 difinfsn 7175 2omotaplemap 7342 enq0tr 7520 distrlem4prl 7670 distrlem4pru 7671 ltaprg 7705 lelttr 8134 ltletr 8135 readdcan 8185 addcan 8225 addcan2 8226 ltadd2 8465 divmulassap 8741 xrlelttr 9900 xrltletr 9901 xaddass 9963 xleadd1a 9967 xlesubadd 9977 icoshftf1o 10085 difelfzle 10228 fzo1fzo0n0 10278 modqmuladdim 10478 modqmuladdnn0 10479 modqm1p1mod0 10486 q2submod 10496 modifeq2int 10497 modqaddmulmod 10502 seq1g 10574 seqp1g 10577 ltexp2a 10702 exple1 10706 expnlbnd2 10776 nn0ltexp2 10820 nn0leexp2 10821 mulsubdivbinom2ap 10822 expcan 10827 fiprsshashgt1 10928 maxleastb 11398 maxltsup 11402 xrltmaxsup 11441 xrmaxltsup 11442 xrmaxaddlem 11444 xrmaxadd 11445 addcn2 11494 mulcn2 11496 isumz 11573 dvdsmodexp 11979 modmulconst 12007 dvdsmod 12046 divalglemex 12106 divalg 12108 gcdass 12209 rplpwr 12221 rppwr 12222 nnwodc 12230 uzwodc 12231 rpmulgcd2 12290 rpdvds 12294 rpexp 12348 znege1 12373 prmdiveq 12431 hashgcdlem 12433 coprimeprodsq 12453 coprimeprodsq2 12454 pythagtriplem3 12463 pcdvdsb 12516 pcgcd1 12524 dvdsprmpweq 12531 pcbc 12547 ctinf 12674 nninfdc 12697 isnsgrp 13110 issubmnd 13146 mulgnn0p1 13341 mulgnnsubcl 13342 mulgneg 13348 mulgdirlem 13361 nmzsubg 13418 ghmmulg 13464 ring1eq0 13682 rmodislmod 13985 lspss 14033 2idlcpblrng 14157 neiint 14489 topssnei 14506 cnptopco 14566 cnrest2 14580 cnptoprest 14583 upxp 14616 bldisj 14745 blgt0 14746 bl2in 14747 blss2ps 14750 blss2 14751 xblm 14761 blssps 14771 blss 14772 bdmopn 14848 metcnp2 14857 txmetcnp 14862 cncfmptc 14940 dvcnp2cntop 15043 dvcn 15044 ply1term 15087 dvply1 15109 logdivlti 15225 ltexp2 15285 lgsfvalg 15354 lgsneg 15373 lgsmod 15375 lgsdilem 15376 lgsdirprm 15383 lgsdir 15384 lgsdi 15386 lgsne0 15387 1dom1el 15745 |
| Copyright terms: Public domain | W3C validator |