Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr2d | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 18-Oct-1999.) |
Ref | Expression |
---|---|
eqtr2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqtr2d.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
eqtr2d | ⊢ (𝜑 → 𝐶 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eqtr2d.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 1, 2 | eqtrd 2203 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
4 | 3 | eqcomd 2176 | 1 ⊢ (𝜑 → 𝐶 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: 3eqtrrd 2208 3eqtr2rd 2210 ifandc 3563 ifordc 3564 onsucmin 4491 elxp4 5098 elxp5 5099 csbopeq1a 6167 ecinxp 6588 fundmen 6784 fidifsnen 6848 sbthlemi3 6936 ctm 7086 addpinq1 7426 1idsr 7730 prsradd 7748 cnegexlem3 8096 cnegex 8097 submul2 8318 mulsubfacd 8337 divadddivap 8644 infrenegsupex 9553 xadd4d 9842 fzval3 10160 fzoshftral 10194 ceiqm1l 10267 flqdiv 10277 flqmod 10294 intqfrac 10295 modqcyc2 10316 modqdi 10348 frecuzrdgtcl 10368 frecuzrdgfunlem 10375 seq3id2 10465 expnegzap 10510 binom2sub 10589 binom3 10593 fihashssdif 10753 reim 10816 mulreap 10828 addcj 10855 resqrexlemcalc1 10978 absimle 11048 infxrnegsupex 11226 clim2ser 11300 serf0 11315 summodclem3 11343 mptfzshft 11405 fsumrev 11406 fsum2mul 11416 isumsplit 11454 cvgratz 11495 mertenslemi1 11498 fprodrev 11582 ef4p 11657 tanval3ap 11677 efival 11695 sinmul 11707 divalglemnn 11877 dfgcd2 11969 lcmgcdlem 12031 lcm1 12035 oddpwdclemxy 12123 oddpwdclemdc 12127 eulerthlemth 12186 hashgcdeq 12193 powm2modprm 12206 pythagtriplem16 12233 pczpre 12251 pcqdiv 12261 pcadd 12293 pcfac 12302 4sqlem10 12339 ennnfonelemp1 12361 strslfvd 12457 cnclima 13017 dveflem 13481 tangtx 13553 abssinper 13561 reexplog 13586 rprelogbdiv 13669 lgsdirnn0 13742 lgsdinn0 13743 2sqlem2 13745 mul2sq 13746 |
Copyright terms: Public domain | W3C validator |