Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr2d | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 18-Oct-1999.) |
Ref | Expression |
---|---|
eqtr2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqtr2d.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
eqtr2d | ⊢ (𝜑 → 𝐶 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eqtr2d.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 1, 2 | eqtrd 2198 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
4 | 3 | eqcomd 2171 | 1 ⊢ (𝜑 → 𝐶 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: 3eqtrrd 2203 3eqtr2rd 2205 ifandc 3556 onsucmin 4483 elxp4 5090 elxp5 5091 csbopeq1a 6153 ecinxp 6572 fundmen 6768 fidifsnen 6832 sbthlemi3 6920 ctm 7070 addpinq1 7401 1idsr 7705 prsradd 7723 cnegexlem3 8071 cnegex 8072 submul2 8293 mulsubfacd 8312 divadddivap 8619 infrenegsupex 9528 xadd4d 9817 fzval3 10135 fzoshftral 10169 ceiqm1l 10242 flqdiv 10252 flqmod 10269 intqfrac 10270 modqcyc2 10291 modqdi 10323 frecuzrdgtcl 10343 frecuzrdgfunlem 10350 seq3id2 10440 expnegzap 10485 binom2sub 10564 binom3 10568 fihashssdif 10727 reim 10790 mulreap 10802 addcj 10829 resqrexlemcalc1 10952 absimle 11022 infxrnegsupex 11200 clim2ser 11274 serf0 11289 summodclem3 11317 mptfzshft 11379 fsumrev 11380 fsum2mul 11390 isumsplit 11428 cvgratz 11469 mertenslemi1 11472 fprodrev 11556 ef4p 11631 tanval3ap 11651 efival 11669 sinmul 11681 divalglemnn 11851 dfgcd2 11943 lcmgcdlem 12005 lcm1 12009 oddpwdclemxy 12097 oddpwdclemdc 12101 eulerthlemth 12160 hashgcdeq 12167 powm2modprm 12180 pythagtriplem16 12207 pczpre 12225 pcqdiv 12235 pcadd 12267 pcfac 12276 4sqlem10 12313 ennnfonelemp1 12335 strslfvd 12431 cnclima 12823 dveflem 13287 tangtx 13359 abssinper 13367 reexplog 13392 rprelogbdiv 13475 lgsdirnn0 13548 lgsdinn0 13549 2sqlem2 13551 mul2sq 13552 |
Copyright terms: Public domain | W3C validator |