Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr2d | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 18-Oct-1999.) |
Ref | Expression |
---|---|
eqtr2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqtr2d.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
eqtr2d | ⊢ (𝜑 → 𝐶 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eqtr2d.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 1, 2 | eqtrd 2203 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) |
4 | 3 | eqcomd 2176 | 1 ⊢ (𝜑 → 𝐶 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: 3eqtrrd 2208 3eqtr2rd 2210 ifandc 3562 onsucmin 4489 elxp4 5096 elxp5 5097 csbopeq1a 6164 ecinxp 6584 fundmen 6780 fidifsnen 6844 sbthlemi3 6932 ctm 7082 addpinq1 7413 1idsr 7717 prsradd 7735 cnegexlem3 8083 cnegex 8084 submul2 8305 mulsubfacd 8324 divadddivap 8631 infrenegsupex 9540 xadd4d 9829 fzval3 10147 fzoshftral 10181 ceiqm1l 10254 flqdiv 10264 flqmod 10281 intqfrac 10282 modqcyc2 10303 modqdi 10335 frecuzrdgtcl 10355 frecuzrdgfunlem 10362 seq3id2 10452 expnegzap 10497 binom2sub 10576 binom3 10580 fihashssdif 10740 reim 10803 mulreap 10815 addcj 10842 resqrexlemcalc1 10965 absimle 11035 infxrnegsupex 11213 clim2ser 11287 serf0 11302 summodclem3 11330 mptfzshft 11392 fsumrev 11393 fsum2mul 11403 isumsplit 11441 cvgratz 11482 mertenslemi1 11485 fprodrev 11569 ef4p 11644 tanval3ap 11664 efival 11682 sinmul 11694 divalglemnn 11864 dfgcd2 11956 lcmgcdlem 12018 lcm1 12022 oddpwdclemxy 12110 oddpwdclemdc 12114 eulerthlemth 12173 hashgcdeq 12180 powm2modprm 12193 pythagtriplem16 12220 pczpre 12238 pcqdiv 12248 pcadd 12280 pcfac 12289 4sqlem10 12326 ennnfonelemp1 12348 strslfvd 12444 cnclima 12938 dveflem 13402 tangtx 13474 abssinper 13482 reexplog 13507 rprelogbdiv 13590 lgsdirnn0 13663 lgsdinn0 13664 2sqlem2 13666 mul2sq 13667 |
Copyright terms: Public domain | W3C validator |