| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbid | GIF version | ||
| Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Apr-2005.) |
| Ref | Expression |
|---|---|
| ifbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ifbid | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbid.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | ifbi 3582 | . 2 ⊢ ((𝜓 ↔ 𝜒) → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ifcif 3562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-if 3563 |
| This theorem is referenced by: ifbieq1d 3584 ifbieq2d 3586 ifbieq12d 3588 ifandc 3600 ifordc 3601 pw2f1odclem 6904 nnnninf 7201 nnnninf2 7202 nnnninfeq 7203 nninfisollemne 7206 nninfisol 7208 fodjum 7221 fodju0 7222 fodjuomni 7224 fodjumkv 7235 nninfwlporlemd 7247 nninfwlpor 7249 nninfwlpoimlemg 7250 nninfwlpoimlemginf 7251 nninfwlpoim 7254 nninfinfwlpo 7255 xaddval 9939 0tonninf 10551 1tonninf 10552 nninfinf 10554 sumeq1 11539 summodc 11567 zsumdc 11568 fsum3 11571 isumss 11575 sumsplitdc 11616 prodeq1f 11736 zproddc 11763 fprodseq 11767 nninfctlemfo 12234 pcmpt 12539 pcmpt2 12540 pcfac 12546 lgsval 15353 lgsneg 15373 lgsdilem 15376 lgsdir2 15382 lgsdir 15384 bj-charfunbi 15565 2omap 15750 subctctexmid 15755 nninfalllem1 15763 nninfsellemdc 15765 nninfself 15768 nninfsellemeq 15769 nninfsellemqall 15770 nninfsellemeqinf 15771 nninfomni 15774 nninffeq 15775 nnnninfex 15777 dceqnconst 15817 dcapnconst 15818 |
| Copyright terms: Public domain | W3C validator |