| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbid | GIF version | ||
| Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Apr-2005.) |
| Ref | Expression |
|---|---|
| ifbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ifbid | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbid.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | ifbi 3600 | . 2 ⊢ ((𝜓 ↔ 𝜒) → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ifcif 3579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-if 3580 |
| This theorem is referenced by: ifbieq1d 3602 ifbieq2d 3604 ifbieq12d 3606 ifandc 3620 ifordc 3621 pw2f1odclem 6956 nnnninf 7254 nnnninf2 7255 nnnninfeq 7256 nninfisollemne 7259 nninfisol 7261 fodjum 7274 fodju0 7275 fodjuomni 7277 fodjumkv 7288 nninfwlporlemd 7300 nninfwlpor 7302 nninfwlpoimlemg 7303 nninfwlpoimlemginf 7304 nninfwlpoim 7307 nninfinfwlpo 7308 xaddval 10002 0tonninf 10622 1tonninf 10623 nninfinf 10625 sumeq1 11781 summodc 11809 zsumdc 11810 fsum3 11813 isumss 11817 sumsplitdc 11858 prodeq1f 11978 zproddc 12005 fprodseq 12009 nninfctlemfo 12476 pcmpt 12781 pcmpt2 12782 pcfac 12788 lgsval 15596 lgsneg 15616 lgsdilem 15619 lgsdir2 15625 lgsdir 15627 bj-charfunbi 15946 2omap 16132 pw1map 16134 subctctexmid 16139 nninfalllem1 16147 nninfsellemdc 16149 nninfself 16152 nninfsellemeq 16153 nninfsellemqall 16154 nninfsellemeqinf 16155 nninfomni 16158 nninffeq 16159 nnnninfex 16161 dceqnconst 16201 dcapnconst 16202 |
| Copyright terms: Public domain | W3C validator |