Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifbid | GIF version |
Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Apr-2005.) |
Ref | Expression |
---|---|
ifbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ifbid | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbid.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | ifbi 3546 | . 2 ⊢ ((𝜓 ↔ 𝜒) → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ifcif 3526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-if 3527 |
This theorem is referenced by: ifbieq1d 3548 ifbieq2d 3550 ifbieq12d 3552 ifandc 3563 ifordc 3564 nnnninf 7102 nnnninf2 7103 nnnninfeq 7104 nninfisollemne 7107 nninfisol 7109 fodjum 7122 fodju0 7123 fodjuomni 7125 fodjumkv 7136 nninfwlporlemd 7148 nninfwlpor 7150 nninfwlpoimlemg 7151 nninfwlpoimlemginf 7152 nninfwlpoim 7154 xaddval 9802 0tonninf 10395 1tonninf 10396 sumeq1 11318 summodc 11346 zsumdc 11347 fsum3 11350 isumss 11354 sumsplitdc 11395 prodeq1f 11515 zproddc 11542 fprodseq 11546 pcmpt 12295 pcmpt2 12296 pcfac 12302 lgsval 13699 lgsneg 13719 lgsdilem 13722 lgsdir2 13728 lgsdir 13730 bj-charfunbi 13846 subctctexmid 14034 nninfalllem1 14041 nninfsellemdc 14043 nninfself 14046 nninfsellemeq 14047 nninfsellemqall 14048 nninfsellemeqinf 14049 nninfomni 14052 nninffeq 14053 dceqnconst 14091 dcapnconst 14092 |
Copyright terms: Public domain | W3C validator |