| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbid | GIF version | ||
| Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Apr-2005.) |
| Ref | Expression |
|---|---|
| ifbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ifbid | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbid.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | ifbi 3623 | . 2 ⊢ ((𝜓 ↔ 𝜒) → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ifcif 3602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-if 3603 |
| This theorem is referenced by: ifbieq1d 3625 ifbieq2d 3627 ifbieq12d 3629 ifandc 3643 ifordc 3644 pw2f1odclem 6991 nnnninf 7289 nnnninf2 7290 nnnninfeq 7291 nninfisollemne 7294 nninfisol 7296 fodjum 7309 fodju0 7310 fodjuomni 7312 fodjumkv 7323 nninfwlporlemd 7335 nninfwlpor 7337 nninfwlpoimlemg 7338 nninfwlpoimlemginf 7339 nninfwlpoim 7342 nninfinfwlpo 7343 xaddval 10037 0tonninf 10657 1tonninf 10658 nninfinf 10660 sumeq1 11861 summodc 11889 zsumdc 11890 fsum3 11893 isumss 11897 sumsplitdc 11938 prodeq1f 12058 zproddc 12085 fprodseq 12089 nninfctlemfo 12556 pcmpt 12861 pcmpt2 12862 pcfac 12868 lgsval 15677 lgsneg 15697 lgsdilem 15700 lgsdir2 15706 lgsdir 15708 bj-charfunbi 16132 2omap 16318 pw1map 16320 subctctexmid 16325 nninfalllem1 16333 nninfsellemdc 16335 nninfself 16338 nninfsellemeq 16339 nninfsellemqall 16340 nninfsellemeqinf 16341 nninfomni 16344 nninffeq 16345 nnnninfex 16347 dceqnconst 16387 dcapnconst 16388 |
| Copyright terms: Public domain | W3C validator |