| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbid | GIF version | ||
| Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Apr-2005.) |
| Ref | Expression |
|---|---|
| ifbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ifbid | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbid.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | ifbi 3582 | . 2 ⊢ ((𝜓 ↔ 𝜒) → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ifcif 3562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-if 3563 |
| This theorem is referenced by: ifbieq1d 3584 ifbieq2d 3586 ifbieq12d 3588 ifandc 3600 ifordc 3601 pw2f1odclem 6904 nnnninf 7201 nnnninf2 7202 nnnninfeq 7203 nninfisollemne 7206 nninfisol 7208 fodjum 7221 fodju0 7222 fodjuomni 7224 fodjumkv 7235 nninfwlporlemd 7247 nninfwlpor 7249 nninfwlpoimlemg 7250 nninfwlpoimlemginf 7251 nninfwlpoim 7253 xaddval 9937 0tonninf 10549 1tonninf 10550 nninfinf 10552 sumeq1 11537 summodc 11565 zsumdc 11566 fsum3 11569 isumss 11573 sumsplitdc 11614 prodeq1f 11734 zproddc 11761 fprodseq 11765 nninfctlemfo 12232 pcmpt 12537 pcmpt2 12538 pcfac 12544 lgsval 15329 lgsneg 15349 lgsdilem 15352 lgsdir2 15358 lgsdir 15360 bj-charfunbi 15541 2omap 15726 subctctexmid 15731 nninfalllem1 15739 nninfsellemdc 15741 nninfself 15744 nninfsellemeq 15745 nninfsellemqall 15746 nninfsellemeqinf 15747 nninfomni 15750 nninffeq 15751 dceqnconst 15791 dcapnconst 15792 |
| Copyright terms: Public domain | W3C validator |