![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifbid | GIF version |
Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Apr-2005.) |
Ref | Expression |
---|---|
ifbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ifbid | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbid.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | ifbi 3555 | . 2 ⊢ ((𝜓 ↔ 𝜒) → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ifcif 3535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-if 3536 |
This theorem is referenced by: ifbieq1d 3557 ifbieq2d 3559 ifbieq12d 3561 ifandc 3573 ifordc 3574 nnnninf 7124 nnnninf2 7125 nnnninfeq 7126 nninfisollemne 7129 nninfisol 7131 fodjum 7144 fodju0 7145 fodjuomni 7147 fodjumkv 7158 nninfwlporlemd 7170 nninfwlpor 7172 nninfwlpoimlemg 7173 nninfwlpoimlemginf 7174 nninfwlpoim 7176 xaddval 9845 0tonninf 10439 1tonninf 10440 sumeq1 11363 summodc 11391 zsumdc 11392 fsum3 11395 isumss 11399 sumsplitdc 11440 prodeq1f 11560 zproddc 11587 fprodseq 11591 pcmpt 12341 pcmpt2 12342 pcfac 12348 lgsval 14408 lgsneg 14428 lgsdilem 14431 lgsdir2 14437 lgsdir 14439 bj-charfunbi 14566 subctctexmid 14753 nninfalllem1 14760 nninfsellemdc 14762 nninfself 14765 nninfsellemeq 14766 nninfsellemqall 14767 nninfsellemeqinf 14768 nninfomni 14771 nninffeq 14772 dceqnconst 14810 dcapnconst 14811 |
Copyright terms: Public domain | W3C validator |