| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbid | GIF version | ||
| Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Apr-2005.) |
| Ref | Expression |
|---|---|
| ifbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ifbid | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbid.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | ifbi 3581 | . 2 ⊢ ((𝜓 ↔ 𝜒) → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ifcif 3561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-if 3562 |
| This theorem is referenced by: ifbieq1d 3583 ifbieq2d 3585 ifbieq12d 3587 ifandc 3599 ifordc 3600 pw2f1odclem 6895 nnnninf 7192 nnnninf2 7193 nnnninfeq 7194 nninfisollemne 7197 nninfisol 7199 fodjum 7212 fodju0 7213 fodjuomni 7215 fodjumkv 7226 nninfwlporlemd 7238 nninfwlpor 7240 nninfwlpoimlemg 7241 nninfwlpoimlemginf 7242 nninfwlpoim 7244 xaddval 9920 0tonninf 10532 1tonninf 10533 nninfinf 10535 sumeq1 11520 summodc 11548 zsumdc 11549 fsum3 11552 isumss 11556 sumsplitdc 11597 prodeq1f 11717 zproddc 11744 fprodseq 11748 nninfctlemfo 12207 pcmpt 12512 pcmpt2 12513 pcfac 12519 lgsval 15245 lgsneg 15265 lgsdilem 15268 lgsdir2 15274 lgsdir 15276 bj-charfunbi 15457 subctctexmid 15645 nninfalllem1 15652 nninfsellemdc 15654 nninfself 15657 nninfsellemeq 15658 nninfsellemqall 15659 nninfsellemeqinf 15660 nninfomni 15663 nninffeq 15664 dceqnconst 15704 dcapnconst 15705 |
| Copyright terms: Public domain | W3C validator |