Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifbid | GIF version |
Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Apr-2005.) |
Ref | Expression |
---|---|
ifbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ifbid | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbid.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | ifbi 3540 | . 2 ⊢ ((𝜓 ↔ 𝜒) → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) = if(𝜒, 𝐴, 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ifcif 3520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-if 3521 |
This theorem is referenced by: ifbieq1d 3542 ifbieq2d 3544 ifbieq12d 3546 ifandc 3557 nnnninf 7090 nnnninf2 7091 nnnninfeq 7092 nninfisollemne 7095 nninfisol 7097 fodjum 7110 fodju0 7111 fodjuomni 7113 fodjumkv 7124 xaddval 9781 0tonninf 10374 1tonninf 10375 sumeq1 11296 summodc 11324 zsumdc 11325 fsum3 11328 isumss 11332 sumsplitdc 11373 prodeq1f 11493 zproddc 11520 fprodseq 11524 pcmpt 12273 pcmpt2 12274 pcfac 12280 lgsval 13545 lgsneg 13565 lgsdilem 13568 lgsdir2 13574 lgsdir 13576 bj-charfunbi 13693 subctctexmid 13881 nninfalllem1 13888 nninfsellemdc 13890 nninfself 13893 nninfsellemeq 13894 nninfsellemqall 13895 nninfsellemeqinf 13896 nninfomni 13899 nninffeq 13900 dceqnconst 13938 dcapnconst 13939 |
Copyright terms: Public domain | W3C validator |