![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dju0en | GIF version |
Description: Cardinal addition with cardinal zero (the empty set). Part (a1) of proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
dju0en | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊔ ∅) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4145 | . . 3 ⊢ ∅ ∈ V | |
2 | in0 3472 | . . 3 ⊢ (𝐴 ∩ ∅) = ∅ | |
3 | endjudisj 7240 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∅ ∈ V ∧ (𝐴 ∩ ∅) = ∅) → (𝐴 ⊔ ∅) ≈ (𝐴 ∪ ∅)) | |
4 | 1, 2, 3 | mp3an23 1340 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊔ ∅) ≈ (𝐴 ∪ ∅)) |
5 | un0 3471 | . 2 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
6 | 4, 5 | breqtrdi 4059 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊔ ∅) ≈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 Vcvv 2752 ∪ cun 3142 ∩ cin 3143 ∅c0 3437 class class class wbr 4018 ≈ cen 6765 ⊔ cdju 7067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-iord 4384 df-on 4386 df-suc 4389 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-1st 6166 df-2nd 6167 df-1o 6442 df-er 6560 df-en 6768 df-dju 7068 df-inl 7077 df-inr 7078 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |