![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dju0en | GIF version |
Description: Cardinal addition with cardinal zero (the empty set). Part (a1) of proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
dju0en | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊔ ∅) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4132 | . . 3 ⊢ ∅ ∈ V | |
2 | in0 3459 | . . 3 ⊢ (𝐴 ∩ ∅) = ∅ | |
3 | endjudisj 7211 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∅ ∈ V ∧ (𝐴 ∩ ∅) = ∅) → (𝐴 ⊔ ∅) ≈ (𝐴 ∪ ∅)) | |
4 | 1, 2, 3 | mp3an23 1329 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊔ ∅) ≈ (𝐴 ∪ ∅)) |
5 | un0 3458 | . 2 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
6 | 4, 5 | breqtrdi 4046 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊔ ∅) ≈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 Vcvv 2739 ∪ cun 3129 ∩ cin 3130 ∅c0 3424 class class class wbr 4005 ≈ cen 6740 ⊔ cdju 7038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-1st 6143 df-2nd 6144 df-1o 6419 df-er 6537 df-en 6743 df-dju 7039 df-inl 7048 df-inr 7049 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |