ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dju0en GIF version

Theorem dju0en 7075
Description: Cardinal addition with cardinal zero (the empty set). Part (a1) of proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
dju0en (𝐴𝑉 → (𝐴 ⊔ ∅) ≈ 𝐴)

Proof of Theorem dju0en
StepHypRef Expression
1 0ex 4055 . . 3 ∅ ∈ V
2 in0 3397 . . 3 (𝐴 ∩ ∅) = ∅
3 endjudisj 7071 . . 3 ((𝐴𝑉 ∧ ∅ ∈ V ∧ (𝐴 ∩ ∅) = ∅) → (𝐴 ⊔ ∅) ≈ (𝐴 ∪ ∅))
41, 2, 3mp3an23 1307 . 2 (𝐴𝑉 → (𝐴 ⊔ ∅) ≈ (𝐴 ∪ ∅))
5 un0 3396 . 2 (𝐴 ∪ ∅) = 𝐴
64, 5breqtrdi 3969 1 (𝐴𝑉 → (𝐴 ⊔ ∅) ≈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480  Vcvv 2686  cun 3069  cin 3070  c0 3363   class class class wbr 3929  cen 6632  cdju 6922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039  df-1o 6313  df-er 6429  df-en 6635  df-dju 6923  df-inl 6932  df-inr 6933
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator