Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > res0 | GIF version |
Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.) |
Ref | Expression |
---|---|
res0 | ⊢ (𝐴 ↾ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 4632 | . 2 ⊢ (𝐴 ↾ ∅) = (𝐴 ∩ (∅ × V)) | |
2 | 0xp 4700 | . . 3 ⊢ (∅ × V) = ∅ | |
3 | 2 | ineq2i 3331 | . 2 ⊢ (𝐴 ∩ (∅ × V)) = (𝐴 ∩ ∅) |
4 | in0 3455 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
5 | 1, 3, 4 | 3eqtri 2200 | 1 ⊢ (𝐴 ↾ ∅) = ∅ |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 Vcvv 2735 ∩ cin 3126 ∅c0 3420 × cxp 4618 ↾ cres 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-opab 4060 df-xp 4626 df-res 4632 |
This theorem is referenced by: ima0 4980 resdisj 5049 smo0 6289 tfr0dm 6313 tfr0 6314 fnfi 6926 setsslid 12479 |
Copyright terms: Public domain | W3C validator |