ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  res0 GIF version

Theorem res0 4904
Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.)
Assertion
Ref Expression
res0 (𝐴 ↾ ∅) = ∅

Proof of Theorem res0
StepHypRef Expression
1 df-res 4632 . 2 (𝐴 ↾ ∅) = (𝐴 ∩ (∅ × V))
2 0xp 4700 . . 3 (∅ × V) = ∅
32ineq2i 3331 . 2 (𝐴 ∩ (∅ × V)) = (𝐴 ∩ ∅)
4 in0 3455 . 2 (𝐴 ∩ ∅) = ∅
51, 3, 43eqtri 2200 1 (𝐴 ↾ ∅) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1353  Vcvv 2735  cin 3126  c0 3420   × cxp 4618  cres 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-opab 4060  df-xp 4626  df-res 4632
This theorem is referenced by:  ima0  4980  resdisj  5049  smo0  6289  tfr0dm  6313  tfr0  6314  fnfi  6926  setsslid  12479
  Copyright terms: Public domain W3C validator