ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  res0 GIF version

Theorem res0 4823
Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.)
Assertion
Ref Expression
res0 (𝐴 ↾ ∅) = ∅

Proof of Theorem res0
StepHypRef Expression
1 df-res 4551 . 2 (𝐴 ↾ ∅) = (𝐴 ∩ (∅ × V))
2 0xp 4619 . . 3 (∅ × V) = ∅
32ineq2i 3274 . 2 (𝐴 ∩ (∅ × V)) = (𝐴 ∩ ∅)
4 in0 3397 . 2 (𝐴 ∩ ∅) = ∅
51, 3, 43eqtri 2164 1 (𝐴 ↾ ∅) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1331  Vcvv 2686  cin 3070  c0 3363   × cxp 4537  cres 4541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-opab 3990  df-xp 4545  df-res 4551
This theorem is referenced by:  ima0  4898  resdisj  4967  smo0  6195  tfr0dm  6219  tfr0  6220  fnfi  6825  setsslid  12019
  Copyright terms: Public domain W3C validator