ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  res0 GIF version

Theorem res0 4947
Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.)
Assertion
Ref Expression
res0 (𝐴 ↾ ∅) = ∅

Proof of Theorem res0
StepHypRef Expression
1 df-res 4672 . 2 (𝐴 ↾ ∅) = (𝐴 ∩ (∅ × V))
2 0xp 4740 . . 3 (∅ × V) = ∅
32ineq2i 3358 . 2 (𝐴 ∩ (∅ × V)) = (𝐴 ∩ ∅)
4 in0 3482 . 2 (𝐴 ∩ ∅) = ∅
51, 3, 43eqtri 2218 1 (𝐴 ↾ ∅) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1364  Vcvv 2760  cin 3153  c0 3447   × cxp 4658  cres 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-opab 4092  df-xp 4666  df-res 4672
This theorem is referenced by:  ima0  5025  resdisj  5095  smo0  6353  tfr0dm  6377  tfr0  6378  fnfi  6997  setsslid  12672
  Copyright terms: Public domain W3C validator