ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  res0 GIF version

Theorem res0 4969
Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.)
Assertion
Ref Expression
res0 (𝐴 ↾ ∅) = ∅

Proof of Theorem res0
StepHypRef Expression
1 df-res 4692 . 2 (𝐴 ↾ ∅) = (𝐴 ∩ (∅ × V))
2 0xp 4760 . . 3 (∅ × V) = ∅
32ineq2i 3373 . 2 (𝐴 ∩ (∅ × V)) = (𝐴 ∩ ∅)
4 in0 3497 . 2 (𝐴 ∩ ∅) = ∅
51, 3, 43eqtri 2231 1 (𝐴 ↾ ∅) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1373  Vcvv 2773  cin 3167  c0 3462   × cxp 4678  cres 4682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-opab 4111  df-xp 4686  df-res 4692
This theorem is referenced by:  ima0  5047  resdisj  5117  smo0  6394  tfr0dm  6418  tfr0  6419  fnfi  7050  setsslid  12933
  Copyright terms: Public domain W3C validator