| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > res0 | GIF version | ||
| Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.) |
| Ref | Expression |
|---|---|
| res0 | ⊢ (𝐴 ↾ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 4728 | . 2 ⊢ (𝐴 ↾ ∅) = (𝐴 ∩ (∅ × V)) | |
| 2 | 0xp 4796 | . . 3 ⊢ (∅ × V) = ∅ | |
| 3 | 2 | ineq2i 3402 | . 2 ⊢ (𝐴 ∩ (∅ × V)) = (𝐴 ∩ ∅) |
| 4 | in0 3526 | . 2 ⊢ (𝐴 ∩ ∅) = ∅ | |
| 5 | 1, 3, 4 | 3eqtri 2254 | 1 ⊢ (𝐴 ↾ ∅) = ∅ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 Vcvv 2799 ∩ cin 3196 ∅c0 3491 × cxp 4714 ↾ cres 4718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4145 df-xp 4722 df-res 4728 |
| This theorem is referenced by: ima0 5083 resdisj 5153 smo0 6434 tfr0dm 6458 tfr0 6459 fnfi 7091 setsslid 13069 |
| Copyright terms: Public domain | W3C validator |